
Periodic Communities Mining in Temporal
Networks: Concepts and Algorithms

Hongchao Qin , Rong-Hua Li , Ye Yuan , Guoren Wang , Weihua Yang, and Lu Qin

Abstract—Periodicity is a frequently happening phenomenon for social interactions in temporal networks. Mining periodic communities

are essential to understanding periodic group behaviors in temporal networks. Unfortunately, most previous studies for community

mining in temporal networks ignore the periodic patterns of communities. In this paper, we study the problem of seeking periodic

communities in a temporal network, where each edge is associated with a set of timestamps. We propose novel models, including

s-periodic k-core and s-periodic k-clique, that represent periodic communities in temporal networks. Specifically, a s-periodic k-core (or

s-periodic k-clique) is a k-core (or clique with size larger than k) that appears at least s times periodically in the temporal graph. The

problem of searching periodic core is efficient but the resulting communities may be not enough cohesive; the problem of enumerating

all periodic cliques is not efficient (NP-hard) but the resulting communities are very cohesive. To compute all of them efficiently, we first

develop two effective graph reduction techniques to significantly prune the temporal graph. Then, we transform the temporal graph into

a static graph and prove that mining the periodic communities in the temporal graph equals mining communities in the transformed

graph. Subsequently, we propose a decomposition algorithm to search maximal s-periodic k-core, a Bron-Kerbosch style algorithm to

enumerate all maximal s-periodic k-cliques, and a branch-and-bound style algorithm to find the maximum s-periodic clique. The results

of extensive experiments on five real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

Index Terms—Periodic community, temporal networks, maximal clique, maximum clique, k-core

Ç

1 INTRODUCTION

IN many real-life networks, such as communication networks,
scientific collaboration networks, and social networks, the

links are often associatedwith temporal information. For exam-
ple, in a face-to-face contact network [1], [2], each edge ðu; v; tÞ
denotes a contact between two individuals u and v at time t. In
an email communication network, each email contains a sender
and a receiver, as well as the timewhen the email was sent. In a
scientific collaboration network (e.g., DBLP), each edge ðu; v; tÞ
represents that two authors u and v coauthored a paper at time
t. The networks that involve temporal information are typically
termed as temporal networks [3], [4], [5].

Periodicity is a frequently happening phenomenon for
social interactions in temporal networks. Weekly group
meeting, monthly birthday party, and yearly family reun-
ions � these are regular and significant patterns in temporal
interaction networks. Mining such periodic group patterns
are essential to understanding and predicting group behav-
iors in a temporal network. In this paper, we investigate a
novel data mining problem for temporal networks: periodic

community mining, or the detection of all communities that
occur at regular time intervals, and show that the proposed
technique can be applied to discover the inherent periodic-
ity of communities in a temporal network. Mining the peri-
odic community patterns could be very useful for many
practical applications, two of which are listed as follows.

Periodic Movement Behavior Discovery. Consider an applica-
tion in studying the collective movement behaviors of wild
herds of animals [6]. It is well known that the movement
behavior ofwild herds of animals often exhibits periodic group
patterns. In practice, ecologists can tag the animals with track-
ing sensors to study the collective movement patterns of the
animals. In this application, the interactions of the animals
(e.g., two animals within a short distancemay be considered as
an interaction) can bemodeled as a temporal network. Bymin-
ing periodic communities in this temporal network, we are
able to identify periodic group movement behaviors of wild
animals. Mining such periodic group movement behavior of
wild animals can be of ecological interests [6]. For example, if a
herd of animals fail to follow the periodic mitigation behavior,
it could be a signal of abnormal environment change.

Predicting Future Activities. Periodic pattern is a predictable
pattern, because it repeatedly occurs at regular time intervals.
Oncewe identify a periodic activity, wemay predict the same
activity will appear within a regular time interval. Based on
this observation, we are capable of inferring the future inter-
actions of a group of individuals in a temporal network by
mining periodic communities. Taking a temporal scientific
collaboration network DBLP as an example, suppose that
four researchers A;B;C, and D in DBLP have collaborated
with each other in 2015, 2016, and 2017 years. Then, we can
infer that these four researchers are likely to coauthor papers
in 2018 year.

� Hongchao Qin, Rong-Hua Li, Ye Yuan, and Guoren Wang are with the
Department of Computer Science, Beijing Institute of Technology, Beijing
100811, China. E-mail: {qhc.neu, lironghuascut}@gmail.com, yuanye@mail.
neu.edu.cn, wanggrbit@126.com.

� Weihua Yang is with the Taiyuan University of Technology, Taiyuan
030024, China. E-mail: yangweihua@tyut.edu.cn.

� Lu Qin is with the University of Technology Sydney, Sydney, NSW 2007,
Australia. E-mail: lu.qin@uts.edu.au.

Manuscript received 1 Apr. 2020; revised 30 Aug. 2020; accepted 9 Sept. 2020.
Date of publication 30 Sept. 2020; date of current version 7 July 2022.
(Corresponding author: Guoren Wang.)
Recommended for acceptance by xxx.
Digital Object Identifier no. 10.1109/TKDE.2020.3028025

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022 3927

1041-4347� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
https://orcid.org/0000-0001-6068-5062
mailto:qhc.neu@gmail.com
mailto:lironghuascut@gmail.com
mailto:yuanye@mail.neu.edu.cn
mailto:yuanye@mail.neu.edu.cn
mailto:wanggrbit@126.com
mailto:yangweihua@tyut.edu.cn
mailto:lu.qin@uts.edu.au


Recently, the problem of mining communities on tempo-
ral graphs has attracted much attention due to numerous
applications [4], [5], [7]. For example, Wu et al. [7] proposed
a temporal k-core model to find cohesive subgraphs in a
temporal network. Ma et al.[4] devised a dense subgraph
mining algorithm to identify cohesive subgraphs in a tem-
poral network. Li et al. [5] developed an algorithm to detect
persistent communities in a temporal graph. All these com-
munity mining algorithms do not consider the periodic pat-
terns of communities, thus cannot be applied to identify
periodic communities. To the best of our knowledge, we are
the first to study the periodic community mining problem,
and propose efficient solutions to detect periodic communi-
ties in temporal graphs. The main contributions of our work
are summarized as follows.

Novel models. We propose several models based on the
cohesive subgraph models to characterize periodic commu-
nities in a temporal graph. They are motivated by the con-
cepts such as k-core, k-ECC, k-truss and k-clique. The
containment relation is that k-clique � k-truss� k-ECC �
k-core. In this paper, we study the algorithms of mining
maximal s-periodic k-core, maximal s-periodic k-clique and
maximum s-periodic clique, since the other models can be
computed by the same methods as them.

New algorithms. First, we develop two novel graph
reduction methods, called PNCluster and PECluster, based
on the concept of k-core [8]. On the basis of the PNCluster
and PECluster, we develop two efficient and powerful
graph reduction techniques to prune the input temporal
graph. We show that both PNCluster and PECluster can be
computed in near-linear time and space complexity. Sec-
ond, we use the variables in the processing of finding
PECluster to transform the temporal graph into a static
graph. We have proved that mining the periodic communi-
ties in the temporal graph equals mining communities in
the transformed graph. Third, we propose a decomposition
algorithm to search maximal s-periodic k-core, a Bron-Ker-
bosch style algorithm to enumerate all maximal s-periodic
k-cliques, and a branch-and-bound style algorithm to find
maximum s-periodic clique. In addition, we present theo-
retical analyses for all those algorithms. Although the prob-
lems of enumerating all maximal s-periodic k-cliques and
finding maximum s-periodic clique are NP-hard, they are
fixed-parameter tractable with respect to a newly-proposed
concept called s-periodic degeneracy d̂, which is often very
small in practice as confirmed in our experiments.

Extensive experiments. We conduct comprehensive
experiments on five real-life temporal networks. The results
show that our best algorithm is much faster than the base-
lines on all datasets under most parameter settings. For
example, our best algorithm can identify all maximal s-peri-
odic k-cliques in around 400 seconds on a large temporal
graph with more than 1.7 million nodes and 12 million
edges. We also examine case studies to evaluate the effec-
tiveness of our model. The results show that our model is
indeed able to identify many interesting periodic communi-
ties that can not be found by the other models.

Organization. Section 2 introduces the models and formu-
lates our problem. The graph reduction techniques are pro-
posed in Section 3. Section 4 introduces the transforming
method which can change the temporal graph into a static

graph. Section 5 proposes the algorithms for mining the peri-
odic communities. The experiments are shown in Section 6.
We review the related work in Section 7, and conclude this
work in Section 8.

2 PRELIMINARIES

Let G ¼ ðV; EÞ be an undirected temporal graph, where V
and E denote the set of nodes and the set of temporal edges
respectively. Let n ¼ jVj and m ¼ jEj be the number of
nodes and temporal edges respectively. Each temporal edge
e 2 E is a triplet ðu; v; tÞ, where u; v are nodes in V, and t is
the interaction time between u and v. We assume that t is an
integer, because the timestamp is an integer in practice. For
a temporal graph G, the de-temporal graph of G denoted by
G ¼ ðV;EÞ is a graph that ignores all the timestamps associ-
ated with the temporal edges. More formally, for the de-
temporal graph G of G, we have V ¼ V and E ¼
fðu; vÞjðu; v; tÞ 2 Eg. Let NuðGÞ ¼ fvjðu; vÞ 2 Eg be the set of
neighbor nodes of u, and duðGÞ ¼ jNuðGÞj be the degree of u
in G. A graph G0 ¼ ðV 0; E0Þ is called a subgraph of G ¼
ðV;EÞ if V 0 � V and E0 � E. A subgraph GS ¼ ðVS; ESÞ is
referred to as an induced subgraph of G if ES ¼
fðu; vÞju; v 2 VS; ðu; vÞ 2 Eg. Similarly, a temporal subgraph
GS ¼ ðVS ; ESÞ is referred to as an induced temporal sub-
graph of G if VS � V and ES ¼ fðu; v; tÞju; v 2 VS ; ðu; v; tÞ 2
Eg. For convenience, we use the notion S � G (S � G if
S 6¼ G) to represent that S is a subgraph of G.

Given a temporal graph G, we can extract a series of
snapshots based on the timestamps. Let T ¼ ftjðu; v; tÞ 2 Eg
be the set of timestamps. For each ti 2 T , we can obtain a
snapshot Gi ¼ ðVi; EiÞ where Vi ¼ fujðu; v; tiÞ 2 Eg and Ei ¼
fðu; vÞjðu; v; tiÞ 2 Eg. In the rest of this paper, we assume
without loss of generality that all the timestamps are sorted
in a chronological order, i.e., t1 < t2 < � � � < tjT j. Fig. 1a
illustrates a temporal graph G with 5 nodes and 22 temporal
edges. Figs. 1b and 1c illustrates the de-temporal graph of G
and all the five snapshots of G respectively.

Definition 1 (time support set). Given a temporal graph G,
the time support set of a subgraph S is defined as
TSðSÞ , ftijS � Gig, where Gi is the ith snapshot of G.

Fig. 1. Basic concepts of the temporal graph.

3928 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



Definition 2 (s-periodic time support set). Given a tempo-
ral graph G and a parameter s, a s-periodic time support set of
a subgraph S, denoted by PTsðSÞ, is a subset of TSðSÞ such
that (1) PTsðSÞ ¼ ftj1 ; . . . ; tjsg, and (2) tjiþ1 � tji ¼ p for all
i ¼ 1; . . . ; s � 1 with any constant p.

By Definition 2, we can see that the timestamps of a
s-periodic time support set forms an arithmetic sequence
and the cardinality of a s-periodic time support set is
exactly equal to s. Clearly, there may exist many s-periodic
time support sets for a subgraph S. Based on Definition 2,
we define the s-periodic subgraph below.

Definition 3 (s-periodic subgraph). Given a temporal graph
G, its de-temporal graph G and parameter s, a subgraph S � G
is a s-periodic subgraph in G if there exists a s-periodic time
support set PTsðSÞ which is not empty.

By Definition 3, any s-periodic subgraph S � G has at
least one s-periodic time support set PTsðSÞ. A subgraph S
is a maximal s-periodic subgraph if there is no other s-peri-
odic subgraph S0 that satisfies S � S0. Intuitively, a periodic
community should be a periodic densely-connected sub-
graph. We propose several novel models to define the peri-
odic communities as follows.

Definition 4 (s-periodic k-core). A s-periodic k-core C is a
subgraph of the de-temporal graph G such that (1) every node
inside C has degree at least k, and (2) C is a s-periodic
subgraph.

Definition 5 (s-periodic k-clique). A s-periodic k-clique C
is a subgraph of the de-temporal graph G such that (1) C is a
clique in G with jCj > k, and (2) C is a s-periodic subgraph.

There are various models which can represent communi-
ties in the graph [13], [14], [15], [16], [17]. Fig. 2 shows the
comparison of four widely used cohesiveness models.
Those models have the following properties: (1) a k-ECC
must be a k-core since considering any node u, u will not be
disconnected by removing k� 1 edges so u has degree no
less than k; (2) a k-truss must be a k-ECC since considering
any edge ðu; vÞ, it will be contained in k� 2 triangles so
node u and v can not be disconnected by removing k� 1
edges; (3) a k-clique must be a k-truss since nodes in clique

are connected with each other. Based on the widely-used
k-truss and k-ECC model, we can modify the first condition
in Definitions 4 and 5 to define the s-periodic k-truss and
s-periodic k-ECC.

Table 1 shows the intuitions, cohesiveness, efficiency and
complexity (static model) of those periodic community
models. As s-periodic k-core is the worst cohesive and best
efficient model, and s-periodic k-clique is the best cohesive
and worst efficient model, we study the problem of mining
s-periodic core and s-periodic clique in this paper due to
the limit of space. In addition, we can know that our frame-
work (Section 5) can compute the s-periodic k-ECC/truss
easily by invoking the traditional k-ECC/truss mining algo-
rithms in a transformed static graph.

Note that for a typical temporal graph, many s-periodic
cliques are small and may not be interesting to the users.
Therefore, it will be more useful to find large s-periodic cli-
ques for practical applications. As a result, we focus mainly
on mining the s-periodic cliques with size larger than k as
defined in Definitions 4 and 5. Intuitively, a s-periodic
k-core (or s-periodic k-clique) C is maximal if there is no
other s-periodic k-core (or s-periodic k-clique) C0 meeting
C � C0.

Below, we use an example to illustrate the above defini-
tions and summarizes the problems below.

Example 1. Consider a temporal graph in Fig. 1a. Suppose
that s = 3, k= 2. For the subgraph S ¼ fðv1; v3Þ; ðv2; v3Þg,
the time support set of S is f1; 3; 4; 5g. Clearly, by Defini-
tion 2, the set f1; 3; 5g is a s-periodic time support set of
S. Therefore, the subgraph S is a s-periodic subgraph by
Definition 3. Note that S is not a maximal s-periodic sub-
graph because there is a s-periodic subgraph C ¼
fðv1; v3Þ; ðv2; v3Þ; ðv1; v2Þg that contains S. By Definitions 4
and 5, we can see that C is both a s-periodic k-core and
s-periodic k-clique with PTsðCÞ ¼ f1; 3; 5g. Moreover,
C0 ¼ fðv3; v4Þ; ðv3; v5Þ; ðv4; v5Þg is another s-periodic k-core
and s-periodic k-clique with PTsðC0Þ ¼ f2; 3; 4g.

Problem 1. Given a temporal graph G and parameters s and k,
the goal is to find all the maximal s-periodic k-core (MPCore)
in G.

Problem 2. Given a temporal graph G and parameters s and k,
the goal is to enumerate all the maximal s-periodic k-clique
(MPClique) in G.

In Problem 2, it is hard to set the parameter k to control
the lower size of the clique in some applications, so we
study the problem below to find the largest k.

Problem 3. Given a temporal graph G and parameters s and k,
the goal is to find the maximum s-periodic clique of the largest
size (MAXPClique) in G.

Fig. 2. Comparison of the cohesiveness models.

TABLE 1
Periodic Community Models Based on the Cohesive Subgraph Models

Models Intuitions (all are s-periodic subgraphs C) Cohesiveness Efficiency Complexity (static model)

s-periodic k-core each node in C has degree at least k $ $$$$ OðjEjÞ [9]
s-periodic k-ECC C is still connected after removing k� 1 edges $$ $$$ OðhljEjÞ (l; h < < jV j) [10]
s-periodic k-truss each edge in C supports at least k� 2 triangles $$ $$$ OðjEj1:5Þ [11]
s-periodic k-clique a clique with size no less than k $$$ $ OðjV j23jV j=3Þ (NP-hard) [12]

QIN ETAL.: PERIODIC COMMUNITIES MINING IN TEMPORAL NETWORKS: CONCEPTS ANDALGORITHMS 3929

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



Note that, if we have enumerated all the maximal
s-periodic k-cliques in Problem 2, then Problem 3 will be
solved. However, there are several pruning rules which can
speed up the process of finding maximum s-periodic clique.
So the key issues in this paper are to mine MPCore and
MPClique in G.

NP-Hardness. As shown in Table 1, the k-core can be
found by linear time in terms of jEj, but the maximal clique
enumeration problem is NP-hard. Below, we prove that the
maximal s-periodic k-clique enumeration problem is also
NP-hard.

We can show that the traditional maximal clique enumer-
ation problem is a special case of the maximal s-periodic
k-clique enumeration problem. Consider a temporal graph G
that contains a set of snapshots G ¼ Gi ¼ G2 ¼; . . . ;¼ GjT j.
Clearly, in this temporal graph G, every subgraph of G is
periodic. As a result, the problem of enumerating all maxi-
mal s-periodic k-cliques is equivalent to the problem of enu-
merating all maximal cliques (with size larger than k) in the
de-temporal graphG. So Problems 2 and 3 are NP-hard.

Although there is a close connection between our prob-
lem and the maximal clique enumeration problem, the exist-
ing maximal clique enumeration algorithms cannot be
directly applied to solve our problem. The reason is that the
traditional maximal clique enumeration algorithms, such as
the Bron-Kerbosch algorithm [18] can only identify maximal
cliques in a snapshot Gi for the timestamp ti. It is not clear
to apply this algorithm to derive maximal periodic cliques.

Challenges.To solve our problems, a possible solution is
first to enumerate all maximal cores/cliques in the de-tempo-
ral graph, and then checks which of them is periodic. How-
ever, this method is quite complicated and even intractable,
because a core/clique in a snapshot may contain a maximal
periodic core/clique with less nodes in a periodic time sup-
port set. Therefore, we need to check each subgraph of a
maximal core/clique in each snapshot, which is very costly.

Another potential approach is first to enumerate all periodic
subgraphs, and then applies traditional algorithms to identify
all MPCores/MPCliques in each periodic subgraph. Clearly,
this approach may involve numerous redundant computa-
tions for subgraphs with the same nodes, because the number
of periodic subgraphsmay be very large and the same cores or
cliques could be repeatedly enumerated in many different
periodic subgraphs. Therefore, the challenge of our problem is
how to efficiently enumerate all periodic communities with
less redundant computations. In the following sections, we
will develop several novel graph reduction techniques and an
efficient enumeration algorithm to identify them.

3 REDUCTION BY PERIODIC NODES AND EDGES

In this section, we propose several powerful techniques to
prune the unpromising nodes which are definitely not con-
tained in any periodic communities. Our key idea for graph
reduction is based on the concept of k-core [9]. Before pro-
ceeding further, we first give the definition of k-core (abbre-
viated as KCore) as follows.

Definition 6 (KCore). Given a de-temporal graph G of G and a
parameter k, a KCore is a maximal subgraph of G in which
every node has degree at least k, i.e., duðGÞ � k for u 2 G.

It is easy to check that if a node is contained in a maximal
s-periodic k-core, this node will have at least k neighbors in
the de-temporal graph G of G. Hence, if a node is not
included in the KCore of G, it must be not contained in any
maximal s-periodic k-core. As a consequence, we can first
prune all nodes that are not contained in the KCore of G.
This prune rule is simple, but it may not be very effective,
because it does not consider the periodic property for prun-
ing. Below, we develop novel concepts called PNCluster
and PECluster which can capture the periodic property for
pruning.

3.1 The PNCluster Pruning Rule

By Definitions 4 and 5, we can easily derive that every node
u in periodic communities satisfies a periodic degree property:
there must exist a s-periodic subgraph in which u has
degree no less than k. Therefore, if a node is not contained
in any s-periodic subgraph, it can be safely pruned. Since
the deletion of an unpromising node may trigger its neigh-
bors that violate the periodic degree property, we can itera-
tively prune the graph until all nodes meet the periodic
degree property. Below, we give a definition, called
ðs; kÞ-periodic node, to describe a node that satisfies the
periodic degree property.

Definition 7 (ðs; kÞ-periodic node). Given a temporal graph
G, a subgraph S � G, and parameters s and k, a node v is called a
ðs; kÞ-periodic node in S if and only if there exists a s-periodic
subgraph of S in which v has degree at least k.

Recall that by Definition 3, a s-periodic subgraph may
have many s-periodic time support sets. Therefore, there
may also exist many s-periodic time support sets for a
ðs; kÞ-periodic node v in which v has degree no less than k.
Below, we give a definition to describe all s-periodic time
support sets for a ðs; kÞ-periodic node.

Based on Definition 7, we define the (s; k)-periodic time
support set for a ðs; kÞ-periodic node as follows.

Definition 8 ((s; k)-periodic time support set). Given a
temporal graph G, a subgraph S � V and a ðs; kÞ-periodic node
v, the (s; k)-periodic time support set of v in S is
PTs

kðS; vÞ , ½tj1 ; . . . ; tjs � that satisfies (1) tjiþ1 � tji ¼ p for
each i ¼ 1; . . . ; s � 1 with a constant p, and (2) the degree of v
in each timestamp i is at least k such that dvðS \GtiÞ � k for
each i ¼ 1; . . . ; s � 1.

By Definition 8, for any ðs; kÞ-periodic node v, there is a
s-periodic subgraph S with PTsðSÞ ¼ PTs

kðS; vÞ in which
dvðSÞ � k. Since a s-periodic subgraph may have many
s-periodic time support sets, there also exist many
(s; k)-periodic time support sets for a ðs; kÞ-periodic node v.
For convenience, when there is no confusion of S, s and k,we
let PTv be the set of all those (s; k)-periodic time support sets in
subgraph S for the node v. Clearly, a node v is a ðs; kÞ-periodic
node if and only if PTv 6¼ ; in a subgraph S. Based on the
above definitions, we present a new periodic cohesive sub-
graphmodel, called ðs; kÞ-periodic node cluster (abbreviated
as PNCluster), which will be applied to prune unpromising
nodes in the periodic communities. The PNCluster is defined
as follows.

3930 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



Definition 9 (ðs; kÞ-periodic node cluster). Given a tempo-
ral graph G, two integer parameters s and k, a subset of nodes
S in G is called a ðs; kÞ-periodic node cluster if it meets the fol-
lowing constraints.

(1) Periodic degree constraint: each node u 2 S is a
ðs; kÞ-periodic node of the temporal subgraph induced by S;

(2) Maximal constraint: there does not exist a subset of
nodes S0 in G that satisfies (1) and S � S0.

Lemma 1. Given a temporal graph G, parameters s and k, the
PNCluster is unique in G if it exists.

Proof. We can prove this lemma by a contradiction. Sup-
pose that there exist two different PNCluster in G,
denoted by S1 and S2 respectively (S1 6¼ S2). Let us con-
sider the node set S ¼ S1 [ S2. Since every node in S1 (S2)
is a ðs; kÞ-periodic node, each node in S is also a
ðs; kÞ-periodic node by Definition 7. As a result, every
node in S meets the periodic degree property in Defini-
tion 9. Since S1 6¼ S2, we have S1 � S and S2 � S which
contradicts to the fact that S1 (S2) satisfies the maximal
property. tu

The following example illustrates the above definitions.

Example 2. Consider a temporal graph G shown in Fig. 3.
Note that in Fig. 3, each temporal edge is associated with a
set of integers denoting the set of timestamps of that edge.
Clearly, the de-temporal graph G of G is a 3-core, as every
node in G has at least 3 neighbors. For node v4, we can see
that it has degree no less than 3 in timestamps f1; 2; 3; 5; 7g.
Suppose that s ¼ 3; k ¼ 3. Then, we can derive that v4 is a
ðs; kÞ-periodic node. This is because there exists a s-peri-
odic subgraph S ¼ fðv4; v3Þ; ðv4; v6Þ; ðv4; v7Þg in which
dv4ðSÞ � 3, and the corresponding (s; k)-periodic time sup-
port set for v4 is [1,2,3] (i.e., PT

s
kðS; v4Þ ¼ ½1; 2; 3�). It is easy

to check that there are three (s; k)-periodic time support
sets for v4 in G, which are [1,2,3], [1,3,5] and [3,5,7]. Thus,
we have PTv4 ¼ f½1; 2; 3�; ½1; 3; 5�; ½3; 5; 7�g in G. Also, we
can find that v8 is not a ðs; kÞ-periodic node, because no
s-periodic subgraph contains v8. By Definition 9, we can
obtain that fv1; . . . ; v7g is aPNCluster. tu

Based on Lemma 1, the PNCluster is unique in G so it can
be computed by a decomposition framework. Below, we
develop two efficient algorithms to efficiently calculate the
PNCluster.

The Basic PNCluster Algorithm. Similar to the traditional
k-core algorithm [8], a basic solution to compute the
PNCluster is to peel the nodes from G that violate the peri-
odic degree property. Since the deletion of a node u may
result in u’s neighbors no longer satisfying the periodic
degree property, we need to iteratively process u’s neigh-
bors. Such an iterative peeling procedure terminates until

no node can be deleted. When the algorithm completes, the
remaining nodes form the PNCluster. The detailed descrip-
tion of our algorithm is shown in Algorithm 1.

Algorithm 1. PNCluster ðG; s; kÞ
Input: Temporal graph G ¼ ðV; EÞ, parameters s and k
Output: The PNCluster Vw.
1: Let G ¼ ðV;EÞ be the de-temporal graph of G;
2: Let Gc ¼ ðVc; EcÞ be the KCore of G;
3: Q  ;;D ;;
4: for u 2 Vc do
5: duðGcÞ  compute the degree of u in Gc;
6: ðflag;PTuÞ  ComputePeriod ðG; s; k; u; VcÞ;
7: if flag ¼ 0 then
8: duðGcÞ  0;Q:pushðuÞ;
9: while Q 6¼ ; do
10: v Q:popðÞ; D D [ fvg;
11: for w 2 NvðGcÞ, s.t. duðGcÞ � k do
12: dwðGcÞ  dwðGcÞ � 1;
13: if dwðGcÞ < k thenQ:pushðwÞ;
14: else
15: ðflag;PTwÞ  ComputePeriod ðG; s; k; w; Vc nDÞ;
16: if flag ¼ 0 then
17: dwðGcÞ  0;Q:pushðwÞ;
18: return Vw  Vc nD ;

Algorithm 1 first computes the KCore Gc ¼ ðVc;EcÞ in the
de-temporal graph (lines 1-2), because thePNCluster is clearly
contained in the KCore. Then, for each node u in Vc, the
algorithm invokes Algorithm 2 to check whether u is a
ðs; kÞ-periodic node or not (lines 4-6). If a node u is not a
ðs; kÞ-periodic node, it will be pushed into a queueQ (lines 7-8).
Subsequently, the algorithm iteratively processes the nodes in
Q. In each iteration, the algorithm pops a node v from Q and
uses a set D to maintain all the deleted nodes (line 10). For
each neighbor node w of v, the algorithm updates dwðGcÞ
(lines 12). If the revised dwðGcÞ is smaller than k, w is clearly
not a ðs; kÞ-periodic node. As a consequence, the algorithm
pushes it into Q which will be deleted in the next iterations
(line 13). Otherwise, the algorithm invokes Algorithm 2 to
determine whether w is a ðs; kÞ-periodic node (lines 14-15). If
w is not a ðs; kÞ-periodic node, the algorithm sets dwðGcÞ to 0,
and pushes it into Q. The algorithm terminates when Q is
empty. At this moment, the remaining nodes Vc nD is the
PNCluster of G. Below, we describe the implementation
details of Algorithm 2.

Recall that we need to compute the set of (s; k)-periodic
time support set in GVcnD for a node v, i.e., PTv, to check
whether v is a ðs; kÞ-periodic node or not. The node v is a
ðs; kÞ-periodic node if and only if PTv is nonempty. By Defi-
nition 8, a (s; k)-periodic time support set can be repre-
sented as an arithmetic sequence of the timestamps. In
Algorithm 2, we record PTv as a set where each element TS
(Time Support) in PTv is a four-tuple ½s; i; l; ArrD� represent-
ing an arithmetic sequence. In the four-tuple ½s; i; l; ArrD�, s
denotes the starting timestamp of the arithmetic sequence, i
is the common difference, l represents the number of terms
of the arithmetic sequence, and ArrD (Array of Degree) is
an array that stores the degree of u at each timestamp of the
arithmetic sequence.

Fig. 3. Running example.

QIN ETAL.: PERIODIC COMMUNITIES MINING IN TEMPORAL NETWORKS: CONCEPTS ANDALGORITHMS 3931

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2. ComputePeriod ðG; s; k; u; F Þ
Input: Temporal graph G ¼ ðV; EÞ, parameters s, k, node u, and

node set F
Output: A boolean variable flag and PTu

1: PQ ;; StartS  ;; PTu  ;; flag 0;
2: for t t1 : tjT j do
3: Let Gt be the snapshot of G at timestamp t;
4: du  jNuðGtÞ \ F j;
5: if du � k then
6: for each TS  ½s; i; l; ArrD� 2 PQ do
7: if ðt� TS:sÞ%TS:i ¼ 0 then
8: if ðt� TS:sÞ=TS:i 6¼ TS:l then
9: PQ:popðTSÞ; continue;
10: TS:l TS:lþ 1; TS:ArrD TS:ArrD [ fdug;
11: if TS:l ¼ s then
12: PTu  PTu [ fTSg; flag 1;PQ:popðTSÞ;
13: /* For PNCluster, the algorithm can early termi-

nate. */
14: if t� TS:s > ðs � 1ÞTS:i then PQ:popðTSÞ;
15: for start ½s; d� 2 StartS do
16: PQ:pushð½start:s; t� start:s; 2; fstart:d; dug�Þ;
17: StartS  StartS [ f½t; du�g;
18: return (flag;PTuÞ;

Based on this data structure, the algorithm makes use of
a queue PQ to maintain all the candidates of the arithmetic
sequences. And it uses a set StartS to store all the starting
timestamps of the arithmetic sequences. Each element in
StartS is a two-tuple ½s; d�, where s denotes the starting
timestamp and d denotes the degree of u at s (lines 15-17).
For each item start ½s; d� in StartS, the algorithm makes
use of the considering timestamp t and start:s to generate
an initial arithmetic sequence (lines 15-16). The algorithm
also applies t to generate a new starting timestamp which
will be used for the next iterations (line 17). So lines 2-14
show how to choose the timestamp t which can update PQ
and StartS by enumerating all the timestamps from t1 to
tjT j. For each t, the algorithm calculates the number of
neighbors of u (denoted by du) that are both in Gt (the snap-
shot at the timestamp t) and the node set F (lines 3-4), i.e.,
jNuðGtÞ \ F j. If du � k, the algorithm explores all the candi-
date arithmetic sequences in PQ (lines 5-6). For each candi-
date TS 2 PQ, if ðt� TS:sÞ%TS:i ¼ 0, we may extend the
arithmetic sequence TS by t (line 7). If ðt� TS:sÞ=TS:i 6¼
TS:l, we know that t cannot extend the current arithmetic
sequence TS. Since the remaining timestamps are no less
than t, they also cannot extend TS. Therefore, we can safely
delete the candidate TS (lines 8-9). Otherwise, the algorithm
can augment the arithmetic sequence TS by adding t into
TS. In this case, we increase TS:l by 1, and add du into the
array TS:ArrD (line 8). If the augmented arithmetic
sequence TS has s terms, TS represents a valid (s; k)-peri-
odic time support set for u (line 11). As a result, the algo-
rithm adds TS into PTu and set flag to 1, denoting that u is a
ðs; kÞ-periodic node (line 12). At this moment, the algorithm
can early terminate. Note that Algorithm 2 can also be
applied to compute the complete set of (s; k)-periodic time
support sets for u. Clearly, if t� TS:s > ðs � 1ÞTS:i, t can-
not grow the current arithmetic sequence TS, and TS is no
longer to be a valid (s; k)-periodic time support set. There-
fore, the algorithm deletes TS from PQ (line 14). Then, it

updates PQ and StartS in lines 15-17. The algorithm
explores all the possible arithmetic sequences, so it can cor-
rectly compute PTu. The following example illustrates how
Algorithm 2 works.

Example 3. Reconsider the temporal graph in Fig. 3. Sup-
pose that s ¼ 3; k ¼ 3. It is easy to derive that v4 has
degree no less than 3 at the timestamps f1; 2; 3; 5; 7g.
Fig. 4illustrates the candidate arithmetic sequences when
the algorithm processes a timestamp in f1; 2; 3; 5; 7g. The
first row in Fig. 4 shows the starting timestamp of the can-
didate arithmetic sequences. When t ¼ 1, the starting
timestamp is f1g, and the set StartS ¼ f½1; 6�g (since dv4 ¼
6 at timestamp 1). When t ¼ 2, there is a candidate arith-
metic sequence f1; 2g, and the queue PQ has an element
½1; 1; 2; f6; 5g�. Similarly, when t ¼ 3 there are three candi-
dates which are f1; 2; 3g, f1; 3g, and f2; 3g. Clearly,
f1; 2; 3g is a valid (s; k)-periodic time support set for v4.
When t ¼ 5, the timestamp 5 cannot extend f2; 3g, thus
f2; 3g is deleted. It is easy to check that the timestamp 5
can extend f1; 3g, f1g, f2g, and f3g. As a result, we can
obtain four candidates f1; 3; 5g, f1; 5g, f2; 5g, and f3; 5g.
Likewise, when t ¼ 7, we have seven candidates which
are f3; 5; 7g, f1; 5g, f2; 5g, f1; 7g, f2; 7g, f3; 7g and f5; 7g.
Note that our algorithm cannot delete the candidate
f1; 5g when t ¼ 7, because f1; 5g could be extended by
t > 7 (similar for f2; 5g). Clearly, we can obtain three
(s; k)-periodic time support sets for v4 which are [1,2,3],
[1,3,5], and [3,5,7]. tu

Analysis of Algorithm 1. Below, we analyze the correctness
and complexity of Algorithm 1.

Theorem 1. Algorithm 1 correctly computes the PNCluster.

Proof. Let S ¼ Vc nD. Clearly, by Algorithm 1, each node in
S is a ðs; kÞ-periodic node of the temporal subgraph
induced by S. To prove that S is a PNCluster, we need to
show the maximal property of S. Suppose to the contrary
that there is a set S0 such that (1) every node in S0 is a
ðs; kÞ-periodic node of the temporal subgraph induced by
S0, and (2) S � S0. Since S � S0, there exists a ðs; kÞ-peri-
odic node u 2 S0 n S in the temporal subgraph induced
by S0. Note that by our assumption, every node in S0 has
degree no less than k in a s-periodic subgraph of the tem-
poral graph induced by S0. Thus, Algorithm 1 cannot
delete the node u. Therefore, u 2 Vc nD which is a
contradiction. tu

The complexity of Algorithm 1 is shown as follows.

Lemma 2. For a temporal graph G with jT j timestamps, there are
at most OðjT j2s�1Þ (s; k)-periodic time support sets for each
node in G.

Proof. Recall that each (s; k)-periodic time support set for a
node is a s-term arithmetic sequence which can be

Fig. 4. Illustration of using Algorithm 2 to compute PTðv4Þ.

3932 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



represented as ftiþp; tiþ2p; . . . ; tiþspg, where 0 < i 	
jT j � ðs � 1Þp and p � 1 is a common difference. Clearly,

the maximum p is jT j�1
s�1

j k
. Since iþ sp 	 jT j, we have i 	

jT j � sp. As a result, the total number of arithmetic

sequences can be bounded by
P jT j�1

s�1

� �
p¼1 ðjT j � spÞ. By

relaxing this formula, we can easily derive that the num-

ber of (s; k)-periodic time support sets is bounded by

OðjT j2s�1Þ. tu

Based on Lemma 2, we have the following results.

Corollary 1. The time and space complexity of Algorithm 2 for
computing PTu is OðjT jduðGÞ þ jT j2s�1Þ and OðjT j2Þ
respectively.

Proof. First, Algorithm 2 needs to compute the degree of u
at each timestamp which consumes jT jduðGÞ time in the
worst case. Since there are at most OðjT j2s�1Þ (s; k)-peri-
odic time support sets for u by Lemma 2, the total number
of TS can be bounded by OðjT j2s�1Þ. Therefore, the total
time complexity of Algorithm 2 is OðjT jduðGÞ þ jT j2s�1Þ.
For the space complexity, each TS uses OðsÞ space, thus
the total space complexity is OðjT j2Þ. tu

Theorem 2. The time and space complexity of Algorithm 1 is
OðmjT j2s�1Þ and Oðmþ nþ jT j2Þ respectively.

Proof. We first analyze the time complexity of Algorithm 1.
First, the algorithm takes Oðmþ nÞ time to compute the
k-core Gc ¼ ðVc; EcÞ (line 2). Then, for each node u in Vc,
the algorithm invokes Algorithm 2 to compute PTu which
takes OðjT j2s�1Þ time. Therefore, in lines 4-8, the algo-
rithm consumes OðnjT j2s�1Þ time. In lines 9-17, for each
node v, the algorithm explores all neighbors of v at most
once. For each neighbor w of v, the algorithm needs to
invoke Algorithm 2 to compute PTw which consumes
OðjT j2s�1Þ time. Therefore, the total time complexity in
lines 9-17 is OðmjT j2s�1Þ. Putting it all together, the time
complexity of Algorithm 1 is OðmjT j2s�1Þ. For the space
complexity, the algorithm needs to maintain the graph,
the queue Q, and PTu for a node u 2 Vc which consumes
Oðmþ nþ jT j2Þ space in total. tu

Note that jT j (the number of snapshots) is typically not
very large in practical temporal graphs. For example, in
DBLP temporal network, there are at most 60 snapshots if
we extract a snapshot by year (each snapshot represents a
co-authorship network in one year). Hence, the worst-case
time complexity of our algorithm is near linear w.r.t. the
size of the temporal graph. Moreover, the practical perfor-
mance of Algorithm 1 should be much better than the
worst-case time complexity. This is because Algorithm 1 is
integrated with a degree pruning rule (see lines 12-13 in
Algorithm 1), which significantly decreases the number of
calls of the ComputePeriod procedure. In addition, the
ComputePeriod procedure can early terminate once the
algorithm find a valid (s; k)-periodic time support set,
which can further reduce the time cost of Algorithm 1.

An Improved PNClusterþ Algorithm. Although Algo-
rithm 1 is efficient in practice, it still has two limitations. First,
Algorithm 1 needs to invoke Algorithm 2 to compute PTu for
every node u 2 Vc (line 6), which is very costly for high-

degree nodes. Second, when deleting a node u, Algorithm 1
has to call Algorithm 2 to re-compute PTw for each neighbor
nodew of u (see line 15 in Algorithm 1), which clearly results
in significant amounts of redundant computations.

Algorithm 3. PNClusterþ ðG; s; kÞ
Input: Temporal graph G ¼ ðV; EÞ, parameters s, and k
Output: The PNCluster Vw

1: Let G ¼ ðV;EÞ be the de-temporal graph of G;
2: Let Gc ¼ ðVc; EcÞ be the KCore of G;
3: Q  ;;D ;;
4: Let duðGcÞ be the degree of u in Gc;
5: for u 2 Vc in an increasing order by duðGcÞ do
6: if u 2 D then continue;
7: PTu  ComputePeriod ðu;G; s; k; Vc nDÞ;
8: if PTu ¼ ; thenQ:pushðuÞ;
9: IPTu  InvertIndex (PTu);
10: while Q 6¼ ; do
11: v Q:popðÞ; D D [ fvg;
12: for w 2 NvðGcÞ do
13: if dwðGcÞ � k then
14: dwðGcÞ  dwðGcÞ � 1;
15: if dwðGcÞ < k thenQ:pushðwÞ; continue;
16: if PTw has already been computed then
17: UpdatePeriod (PTw; IPTw; v; k);
18: if PTw ¼ ; thenQ:pushðwÞ;
19: return Vw  ðVc nDÞ;
20: Procedure InvertIndex ðPTuÞ
21: IPTu  ;; L ;; h 1;
22: Let PTuðjÞ  ½s; i; s; ArrD� be the jth element in PTu;
23: for j 1 : jPTuj do
24: for t 0 : ðs � 1Þ do
25: LðhÞ  ½PTuðjÞ:sþ t
 i; j�; h hþ 1;
26: for h 1 : jLj do
27: ½t; j�  LðhÞ; IPTuðtÞ:pushðjÞ;
28: return IPTu;
29: Procedure UpdatePeriod ðPTw; IPTw; v; kÞ
30: for each temporal edge ðw; v; tÞ 2 E do
31: PTSðtÞ  IPTwðtÞ;
32: while PTSðtÞ 6¼ ; do
33: j PTSðtÞ:popðÞ;
34: PTwðjÞ:ArrD½t�  PTwðjÞ:ArrD½t� � 1 ;
35: if PTwðjÞ:ArrD½t� < k then
36: PTw  PTw n fPTwðjÞg;

To overcome these limitations, we propose an improved
algorithm called PNClusterþ. The striking features of
PNClusterþ are twofold. On the one hand, PNClusterþ does
not computePTu for every node u in advance. Instead, it calcu-
lates PTu for the node u on-demand. PNClusterþ processes the
nodes based on an increasing order by their degrees. Specifi-
cally, the algorithm first explores the low-degree nodes and
applies the degree pruning rule to delete nodes. This is because
the low-degree nodes are more likely to be deleted by the
degree pruning rule. Moreover, compared to the high-degree
nodes, the time costs for computing PTu for low-degree nodes
aremuch cheaper. If a node u cannot be removed by the degree
pruning rule, the PNClusterþ algorithm invokes Algorithm 2
to compute PTu on-demand. Note that based on this on-
demand computing paradigm, we can substantially reduce
the computational costs for the high-degree nodes. The reason
is as follows. When processing a high-degree node u, many

QIN ETAL.: PERIODIC COMMUNITIES MINING IN TEMPORAL NETWORKS: CONCEPTS ANDALGORITHMS 3933

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



low-degree neighbors of u may have already been pruned
whichwill significantly decrease the degree of u, thus reducing
the cost for computing PTu. On the other hand, when deleting
a node u, PNClusterþ does not re-compute PTw for a neighbor
node w of u. Instead, PNClusterþ dynamically updates the
computed PTw for each node w, thus substantially avoiding
redundant computations. The detailed description of
PNClusterþ is shown inAlgorithm 3.

Algorithm 3 first computes the KCore Gc ¼ ðVc; EcÞ in the
de-temporal graph (line 2), and then explores the nodes in Vc

based on an increasing order by the degrees in Gc (line 5).
When processing a node u, the algorithm first checks
whether u has been deleted or not (line 6). If u has not been
removed, PNClusterþ invokes Algorithm 2 to compute PTu

(line 7). If PTu is an empty set, u is not a ðs; kÞ-periodic node.
Thus, the algorithm pushes it into the queue Q (line 8). Sub-
sequently, the algorithm iteratively deletes the nodes in Q
(lines 10-18). When removing a node v, PNClusterþ explores
all v’s neighbors (line 12). For a neighbor node w,
PNClusterþ first updates the degree of w (line 14), i.e.,
dwðGcÞ. If the updated degree is less than k, u is not a
ðs; kÞ-periodic node (line 15). In this case, the algorithm
pushes it into Q and continues to process the next node inQ
(the degree pruning rule). Otherwise, if PTw has already
been computed, the algorithm invokes UpdatePeriod to
update PTw (line 17). If the updated PTw becomes empty, w
is not a ðs; kÞ-periodic node and the algorithm pushes w into
Q (line 18). Note that if PTw has not been computed yet, the
algorithm does not need to update PTw. In this case, PTw will
be calculated in the next iterations (see line 7).

To efficiently implement the UpdatePeriod procedure,
we develop an inverted index structure called IPTu to orga-
nize all (s; k)-periodic time support sets maintained in PTu.
By our construction, IPTuðtÞ keeps all arithmetic sequences
that contain the timestamp t. Specifically, for the jth arith-
metic sequence (corresponding to a (s; k)-periodic time sup-
port set) ftji ; tjiþp; . . . ; tjiþðs�1Þ
pg in PTu, we insert an
element j into IPTuðtjiþh
pÞ for each 0 	 h 	 s � 1, i.e.,
IPTuðtjiþh
pÞ:pushðjÞ. Based on PTu, we can easily construct
the inverted index IPTu by invoking the InvertIndex proce-
dure (lines 20-28). Therefore, once we have an invert index
IPTu, we can quickly retrieve the arithmetic sequences con-
taining t.

The UpdatePeriod procedure explores all the temporal
edges ðw; v; tÞ to update PTw after deleting v (line 30). For
each ðw; v; tÞ, by only exploring IPTu, the algorithm identifies
all the arithmetic sequences (the elements in PTw) that con-
tain the timestamp t based on the inverted index structure
(lines 31-33). Since it is easy to iterate through IPTu, it is quick
to update PTw. For each arithmetic sequence, the algorithm
decreases the degree of w at timestamp t by 1 (line 34). If the
updated degree is smaller than k, the algorithm deletes the
arithmetic sequence from PTw (lines 35-36), because it is no
longer a valid (s; k)-periodic time support set. Since our algo-
rithm correctly computes and maintains PTw for every node
w, the correctness of Algorithm 3 can be guaranteed. Below,
we analyze the time and space complexity of Algorithm 3.

Theorem 3. The time and space complexity of Algorithm 3 is
Oðamþ nðas þ T 2s�1Þ and Oðmþ nasÞ respectively, where
a ¼ maxu2VcfjPTujg.

Proof. First, in line 2, the algorithm computes the k-core on
the de-temporal graph which takes Oðmþ nÞ time. In
line 7, the algorithm takes OðnT 2s�1Þ time in the worst
case by Lemma 2. In line 9, the algorithm spends OðasÞ
time to construct the inverted index for each node u in the
worst case. Therefore, the total time cost for computing the
inverted index can be bounded by OðasnÞ. For each tem-
poral edge ðw; v; tÞ, the algorithm updates PTw at most
once, and the cost for each update can be bounded byOðaÞ
in lines 31-35. Therefore, the total cost for updating all PTw

is bounded byOðamÞ. Putting it all together, the time com-
plexity of Algorithm 3 isOðamþ nðas þ T 2s�1Þ.

Note that for each node u, the space overhead of the
inverted index IPTu is equal to that of PTu. Since the algo-
rithm uses OðasÞ space for storing PTu, the total space
overhead for maintaining both IPTu and PTu for all u 2
Vc is bounded by OðnasÞ. The algorithm also needs to
store the temporal graph and the queue Q which con-
sumes Oðmþ nÞ space. Therefore, the space complexity
of Algorithm 3 is Oðmþ nasÞ. tu

Note that the time complexity of Algorithm 3 is lower
than that of Algorithm 1, as a is smaller than T 2s�1. In prac-
tice, the space usage of Algorithm 3 is much smaller than
the worst-case bound, because our algorithm only work on
the k-core subgraph which is typically significantly smaller
than the original temporal graph.

3.2 The PECluster Pruning Rule

Although PNCluster can prune many unpromising nodes, it
is not very effective for pruning unpromising edges. For
example, in Fig. 3, the edge ðv4; v5Þ is clearly not a s-periodic
edge with s ¼ 3, as the timestamps associated with this edge
cannot form an 3-term arithmetic sequence. As a result,
such an edge cannot be contained in any s-periodic k-clique.
To overcome this defect, we propose a novel ðs; kÞ-periodic
edge cluster (abbreviated as PECluster) pruning technique
which combines both s-periodic nodes and edges for prun-
ing. Below, we give a definition of s-periodic edge.

Definition 10 (s-periodic edge). Given a temporal graph G,
its de-temporal graph G and parameter s, an edge ðu; vÞ 2 G is
called a s-periodic edge if there exists a s-periodic time support
set for the subgraph fðu; vÞg.

It is easy to see that a s-periodic edge is also a special
s-periodic subgraph, because we can treat an edge ðu; vÞ as a
special subgraph. Therefore, every s-periodic edge also has
a set of s-periodic time support sets. For convenience, we let
EPTuv be the set of all those s-periodic time support sets for a
s-periodic edge ðu; vÞ. Clearly, an edge is a s-periodic edge if
and only if EPTuv 6¼ ;. Note that to determine whether an
edge ðu; vÞ is a s-periodic edge, we can make use of a similar
algorithm as shown in Algorithm 2 to computeEPTuv, which
takes OðjT j2s�1Þ time in the worst case. Based on Defini-
tion 10, we define the s-periodic-link graph in the following.

Definition 11. A subgraph ~Gc ¼ ð ~Vc; ~EcÞ of the de-temporal
graph G is called a s-periodic-link graph if every edge ðu; vÞ 2
~Ec is a s-periodic edge.

By Definition 11, we can obtain the maximum s-periodic-
link graph by removing all the non-periodic edges from G

3934 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



(i.e., only retain all the s-periodic edges inG). The following
example illustrates the above definitions.

Example 4. Reconsider the temporal graph G shown in
Fig. 3. Suppose that s ¼ 3; k ¼ 3. Then, we can see that
the edge ðv4; v5Þ has three timestamps f1; 2; 5g which
clearly cannot form a 3-term arithmetic sequence. There-
fore, we have EPTv4v5 ¼ ;, indicating that ðv4; v5Þ is not a
s-periodic edge. We can easily derive that all the other
edges in the de-temporal graph G (except ðv4; v5Þ) are
s-periodic edges. Hence, the maximum s-periodic-link
graph is a subgraph by removing edge ðv4; v5Þ in G which
is shown in Fig. 5a. tu

Based on the maximum s-periodic-link graph, we define
the ðs; kÞ-periodic edge cluster (PECluster) as follows.

Definition 12 (ðs; kÞ-periodic edge cluster). A subgraph S
of the maximum s-periodic-link graph Ĝc ¼ ðV̂c; ÊcÞ is called a
ðs; kÞ-periodic edge cluster if it satisfies the following
constraints.

(1) Periodic edge constraint: for any edge ðu; vÞ in S,
PTu \ PTv \ EPTuv 6¼ ;;

(2) Maximal constraint: there does not exist a subgraph S0

of Ĝc that satisfies (1) and S � S0.

Based on Definition 12, we are able to derive several use-
ful properties for the ðs; kÞ-periodic edge cluster.

Lemma 3. Given a temporal graph G, its de-temporal graph G,
parameters s and k, the PECluster is unique in G if it exists.

Proof. The proof is similar to the proof of Lemma 1, thus we
omit for brevity. tu

Lemma 4. Let G be the de-temporal graph, Gw be the subgraph
induced by the PNCluster, and Gs is the PECluster. Then, we
have Gs � Gw.

Proof. By Definition 12, each edge ðu; vÞ 2 Gs meets PTu \
PTv \ EPTuv 6¼ ;, indicating that both PTu 6¼ ; and PTv 6¼
;. As a result, all the nodes in Gs is a ðs; kÞ-periodic node.
Since PNCluster Gw is a maximal subgraph that consists
of all ðs; kÞ-periodic nodes, we have Gs � Gw. tu

As shown in Lemma 4, such a PECluster pruning tech-
nique is more powerful than the PNCluster pruning tech-
nique, since it may prune more edges and nodes of the
original temporal graph. Below, we develop an algorithm to
efficiently compute the PECluster.

The basic idea of PECluster algorithm is that we first
compute the subgraph induced by the PNCluster, denoted
by Gw. Then, we identify all the edges in Gw that do not sat-
isfy the periodic edge constraint in Definition 12 (i.e., find
the edge ðu; vÞ meeting PTu \ PTv \ EPTuv ¼ ;Þ. After that,

we delete all those unpromising edges from Gw. Note that
the deletion of an edge ðu; vÞmay trigger u and v’s outgoing
edges that violate the periodic edge constraint. Therefore,
we need to iteratively perform this edge peeling procedure,
until no edge can be removed.

Algorithm 4. PECluster ðG; s; kÞ
Input: Temporal graph G ¼ ðV; EÞ, parameters s, and k
Output: The PECluster Gs ¼ ðVs; EsÞ
1: Vw  PNClusterþ ðG; s; kÞ;
2: PTu and IPTu have already been computed in PNClusterþ

for each u 2 Vw;
3: Let G ¼ ðV;EÞ be the de-temporal graph of G;
4: Let Gw ¼ ðVw; EwÞ be the subgraph induced by Vw in G;
5: EQ ;; ED ;;
6: for each ðu; vÞ 2 Ew do
7: Compute EPTuv;
8: if PTu \ PTv \ EPTuv ¼ ; then
9: EQ:pushððu; vÞÞ;
10: while EQ 6¼ ; do
11: ðu; vÞ  EQ:popðÞ; ED ED [ fðu; vÞg;
12: UpdatePeriod (PTu; IPTu; v; k);
13: for x 2 NuðGwÞ do
14: if ðu; xÞ =2 EQ and ðu; xÞ =2 ED then
15: if PTu \ PTx \ EPTux ¼ ; then EQ:pushððu; xÞÞ;
16: UpdatePeriod (PTv; IPTv; u; k);
17: for x 2 NvðGwÞ do
18: if ðv; xÞ =2 EQ and ðv; xÞ =2 ED then
19: if PTv \ PTx \ EPTvx ¼ ; then EQ:pushððv; xÞÞ;
20: return Gs  the subgraph comprises all edges in Ew n ED ;

The detailed description of PECluster algorithm is shown
in Algorithm 4. In line 1, the algorithm first invokes Algo-
rithm 3 to calculate the PNCluster Vw. Note that by Algo-
rithm 3, we are able to obtain PTu and IPTu for each u 2 Vw

(line 2). Also, we can easily get the subgraph Gw ¼ ðVw;EwÞ
induced by Vw. The algorithm uses a queue EQ and a set
ED to maintain all the unpromising edges (line 5). For each
ðu; vÞ 2 Ew, the algorithm computes the set EPTðu; vÞ
(lines 6-7), which is denoted by EPTuv in Algorithm 4. Then,
if ðu; vÞ violates the periodic edge constraint
(PTu \ PTv \ EPTuv ¼ ;Þ), the algorithm pushes it into the
queue EQ (lines 8-9). Subsequently, the algorithm itera-
tively deletes the element in EQ (lines 10-19). For each
ðu; vÞ 2 EQ, the algorithm needs to update PTu and PTv by
invoking the UpdatePeriod procedure (lines 12 and 16). This
is because the deletion of an edge ðu; vÞ decreases the
degrees of both u and v by 1 which may further result in the
updating of PTu and PTv. Since PTu (or PTv) may update,
the algorithm has to verify each edge ðu; xÞ (or edge ðv; xÞ)
for x 2 NuðGwÞ whether it satisfies the periodic edge con-
straint or not (lines 13-15 and lines 17-19). If the edge ðu; xÞ
(or edge ðv; xÞ) does not satisfy the periodic edge constraint,
the algorithm pushes it into EQ (lines 15 and 19). The algo-
rithm terminates when EQ ¼ ;. At this moment, the sub-
graph comprises all the remaining edges is a PECluster.
Since all the edges that violate the periodic edge constraint
are deleted and every remaining edge meets the periodic
edge constraint, Algorithm 4 can correctly compute the
PECluster. The following example illustrates how Algo-
rithm 4 works.

Fig. 5. Illustration of the PECluster pruning (s ¼ 3; k ¼ 3).

QIN ETAL.: PERIODIC COMMUNITIES MINING IN TEMPORAL NETWORKS: CONCEPTS ANDALGORITHMS 3935

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



Example 5. Reconsider the temporal graph shown in Fig. 3.
Suppose that s ¼ 3; k ¼ 3. First, by computing the
PNCluster, the algorithm can obtain an induced subgraph
Gw ¼ ðVw;EwÞ where Vw ¼ fv1; . . . ; v7g. Then, the algo-
rithm calculates EPTuv for each ðu; vÞ 2 Ew (lines 6-7).
Clearly, we have EPTv4v5 ¼ ;, thus the algorithm pushes
ðv4; v5Þ into EQ (lines 8-9). Also, the algorithm pushes
ðv3; v5Þ into EQ. The reason is that PTv3 ¼ f½1; 3; 5�g,
PTv5 ¼ f½1; 2; 3�g, EPTv3v5 ¼ f½1; 2; 3�g, thus PTv3 \ PTv5 \
EPTv3v5 ¼ ; (lines 8-9). Subsequently, the algorithm pops
ðv4; v5Þ from EQ and updates PTv4 and PTv5 . Since PTv4

and PTv5 do not change after deleting ðv4; v5Þ, the algo-
rithm continues to pop ðv3; v5Þ from EQ. After removing
ðv3; v5Þ, PTv5 is updated to be an empty set. Thus, the
algorithm will push ðv5; v6Þ and ðv5; v7Þ into EQ, and then
iteratively processes these two edges. When the algorithm
terminates, we can obtain the PECluster as shown in
Fig. 5b (the subgraph induced by the nodes fv1; . . . ; v4g).
Compared to the PNCluster pruning, the PECluster prun-
ing can prune many additional nodes and edges, indicat-
ing that the PECluster pruning is indeed much more
powerful than the PNCluster pruning. tu

Theorem 4. The time and space complexity of Algorithm 4 is
OðmjT j2s�1Þ and OðmjT j2s�1Þ respectively.

Proof. First, the algorithm takes Oðamþ nðas þ jT j2s�1Þ to
compute the PNCluster, where a ¼ maxu2VcfjPTujg. Sec-
ond, the algorithm consumes OðjT j2s�1Þ time to compute
EPTðu; vÞ for each ðu; vÞ 2 Ew. Thus, the total time costs to
compute EPTðu; vÞ for all edges in Ew can be bounded by
OðmjT j2s�1Þ. Third, for each deleted edge ðu; vÞ, the algo-
rithm takes OðaÞ time to update PTu and PTv. Therefore,
the total time complexity of lines 10-17 can be bounded
by OðamÞ. Putting it all together, the time complexity of
Algorithm 4 is OðmjT j2s�1Þ. For the space complexity, it
is easy to show that the total space usage of our algorithm
can be bounded by OðmjT j2s�1Þ. tu

Note that since our algorithm only works on the
PNCluster (not the original temporal graph), the time cost of
Algorithm 4 is much less than the worst case bound in prac-
tice, which is also confirmed in our experiments.

4 TRANSFORMING THE TEMPORAL GRAPH INTO

STATIC GRAPH BY PERIODIC NODES AND EDGES

In this section, we present the approach of transforming the
temporal graph into static graph by periodic nodes and
edges. Recall that in PECluster Gs ¼ ðVs; EsÞ, each node u
has a set of (s; k)-periodic time support sets, i.e., PTu, and
each edge ðu; vÞ also has a set of s-periodic time support
sets, i.e., EPTuv. Since every node u and every edge ðu; vÞ in
the periodic community shares at least one periodic time
support set, we can decompose the periodic community
into a set of nodes and edges which are associated with the
same periodic time support sets. This motivate us to con-
struct a graph ~G ¼ ð ~V ; ~EÞ as follows. For each node v 2 Vs

and an element PTs
v in PTv, we construct a node ðv;PTs

vÞ for
~V . As a result, for each node v 2 Vs, we can obtain jPTvj
nodes in ~V . For any two nodes ðu;PTs

uÞ and ðv;PT
s
vÞ in ~V ,

we create an edge ðu; v;EPTs
uvÞ if and only if EPTs

uv ¼ PTs
u ¼

PTs
v (i.e., the same arithmetic sequence), where EPTs

uv is an
element in EPTuv. This is because for any edge ðu; vÞ in a
periodic community, the nodes u, v and the edge ðu; vÞ
shares the same periodic time support set. Clearly, by this
construction, each node in the transformed graph is a two-
tuple (a node and a periodic time support set), and each
edge is a three-tuple (an edge and a periodic time support
set). The following example illustrates our graph transfor-
mation method.

Example 6. Consider the temporal graph shown in Fig. 3.
Suppose that s=3, k=3. Then, the reduced graph by
PECluster is shown in Fig. 5b. Based on the reduced
graph, we can obtain the transformed graph ~G shown in
Fig. 6. Specifically, Fig. 6a depicts the reduced graph and
the transformed nodes. For example, for the node v1, we
have PTðv1Þ ¼ f½1; 3; 5�; ½3; 5; 7�g. Therefore, we construct
two nodes v1 ¼ ðv1; ½1; 3; 5�Þ and v2 ¼ ð3; 5; 7Þ in ~G. Simi-
larly, we can obtain four other nodes in ~G which are
v3; . . . ;v6 as shown in Fig. 6a. Since the nodes v1, v2, and
edge ðv1; v2Þ are associated with the same periodic time
support sets [1,3,5] and [3,5,7], we can obtain two edges
ðv1;v3Þ and ðv2;v4Þ in the transformed graph ~G. Like-
wise, we can get all the other edges in ~G. The final trans-
formed graph ~G is shown in Fig. 6b which contains 6
nodes and 7 edges. tu

Below, we show the relation of PECluster, MPCore,
MPClique andMAXPClique.

Lemma 5. Any node and edge in a MPCore must be contained
in the PECluster.

Proof. According to Definition 4, a MPCore C is a s-peri-
odic subgraph, and any node v in C has at least k neigh-
bors. By Definition 7, any node v is a ðs; kÞ-periodic node,
and therefore C satisfies the periodic degree constraint.
Since the PNCluster is a maximal subgraph meeting the
periodic degree constraint, C must be contained in the
PNCluster.

Consider an edge ðu; vÞ in a MPCore C. Since C is a
s-periodic subgraph, there exist at least one s-periodic
time support set TS for C. Since u; v 2 C, TS is also a
(s; k)-periodic time support set for both nodes u and v by
Definitions 7 and 8. Similarly, TS is also a s-periodic time
support set for the edge ðu; vÞ, as ðu; vÞ 2 C. As a result,
we have PTu \ PTv \ EPTuv 6¼ ;. Since each edge ðu; vÞ 2
C meets PTu \ PTv \ EPTuv 6¼ ;, ðu; vÞ must be contained
in the PECluster by Definition 12. tu

Lemma 6. Any node and edge in a MPClique must be contained
in theMPCore.

Fig. 6. Illustration of the graph transformation method.

3936 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



Proof. The proof can be easily get by Definitions 4 and 5,
thus we omit it for brevity. tu

Corollary 2. Any node and edge in s-periodic k-ECC must be
contained in the maximal s-periodic k-core, s-periodic k-truss
must be in s-periodic k-ECC, s-periodic k-clique must be in
s-periodic k-truss.

Based on Lemmas 5 and 6, we know that MPCore and
MPClique are contained in the PECluster of G. Therefore,
we can first compute the PECluster to prune unpromising
nodes and edges, and then mine MPCore and MPClique on
the reduced graph. The following lemma shows that any
MPCore in temporal graph G is an unique corresponding
core in the transformed graph ~G.

Lemma 7. For any s-periodic k-core C ¼ ðVc; EcÞ in the reduced
graph Gs, there exists a k-core ~C ¼ ð ~Vc; ~EcÞ in the transformed
graph ~G such that the node set ~Vc of ~C is equal to Vc. For any
maximal k-core ~C ¼ ð ~Vc; ~EcÞ with node set ~Vc sharing the same
s-periodic time support set in ~G, the subgraph induced by ~Vc is
a maximal s-periodic k-core C in Gs.

Proof. First, by Definition 5, each s-periodic k-core C ¼
ðVc; EcÞ in Gs has at least one s-periodic time support set
TS. According to the graph transformation method, we
can easily derive that the set of nodes fðv; TSÞjv 2 Vcg
form a k-core ~C in ~G. Clearly, by our definition, we have
Vc ¼ ~Vc.

Second, for each maximal k-core ~C ¼ ð ~Vc; ~EcÞ in which
nodes in ~Vc share the same s-periodic time support set,
we have EPTs

uv ¼ PTs
u ¼ PTs

v 6¼ ; for any two nodes
u; v 2 ~Vc by the graph transformation approach. As a
result, the node set ~Vc forms a k-core C, and all nodes
and edges share the same s-periodic time support set
EPTs

uv. Since ~C is a maximal clique, no node can be
added into ~C while maintaining the property of EPTs

uv ¼
PTs

u ¼ PTs
v 6¼ ;. Therefore, the maximal k-core ~C in ~G is a

MPCore in Gs. tu

Corollary 3. Any MPClique in temporal graph G is an unique
corresponding maximal clique in the transformed graph ~G.

Proof.We can prove that (1) For anyMPClique C0 ¼ ðV 0c ; E0cÞ
in the reduced graph Gs, there exists a maximal clique
~C ¼ ð ~Vc; ~EcÞ in the transformed graph ~G such that the
node set ~Vc is equal to V 0c . (2) For any maximal clique
~C ¼ ð ~Vc; ~EcÞ with node set ~Vc in ~G, the subgraph induced
by ~Vc is aMPClique inGs. The detail is similar to the proof
of Lemma 7. tu

5 MINING THE PERIODIC COMMUNITIES

5.1 Searching maximal s-periodic k-core

Based on Lemma 7, any MPCore in temporal graph G is an
unique corresponding core in the transformed graph ~G.
Therefore, we can first compute the PECluster and trans-
form the temporal graph by the construction method in Sec-
tion 4, and then perform a decomposition algorithm in the
transformed graph. The detail of the MPCore algorithm is
shown as follows.

Algorithm 5 invokes the PECluster pruning technique
(Algorithm 4) to prune the temporal graph (line 1). Note
that in this pruning procedure, we can also obtain PTu for

each u 2 Vs and EPTuv for each ðu; vÞ 2 Es (lines 2-3). Based
on PTu and EPTuv, the algorithm can construct the trans-
formed graph ~G (line 4). We can see that each node in ~G is a
two-tuple like ðu;PTs

uÞ in which u is the node id in Gs and
PTs

u is a s-periodic time support set of node u. Then, the
algorithm performs a decomposition algorithm to search
the maximal s-periodic k-core. It maintains Q to store the
deleting nodes and D to store the deleted nodes (line 5).
Then the algorithm pushes the node with degree less than k
into Q and checks whether their neighbors meet the degree
constrict (lines 8-13). After all the nodes in ~V have been
checked in line 6, the remained node set ~V nD is the set of
all nodes in the maximal s-periodic k-core. Furthermore, C
can be grouped into different maximal s-periodic k-core by
PTs

u in each node ðu;PTs
uÞ. The node set in C with different

PTs
u will be in different maximal s-periodic k-core.
It is easy to see that Algorithm 5 only needs Oðj ~V jÞ time

to find the maximal s-periodic k-core, so the time and space
complexity of Algorithm 5 is OðmjT j2s�1Þ and OðmjT j2s�1Þ
respectively, same as that in Algorithm 4.

Algorithm 5.MPCore ðG; s; kÞ
Input: Temporal graph G ¼ ðV; EÞ, parameters s and k
Output: Set of maximal s-periodic k-core C
1: Gs ¼ ðVs; EsÞ  PEClusterðG; s; kÞ;
2: PTu has been computed in PECluster for each u 2 Vs;
3: EPTuv has been calculated in PECluster for each ðu; vÞ 2 Es;
4: ~G ¼ ð ~V ; ~EÞ  the transformed graph based on PTu and

EPTuv;
5: Let dðu;PTsuÞð ~GÞ be the degree of node ðu;PTs

uÞ in ~G; Q  ;;
D ;;

6: for ðu;PTs
uÞ 2 ~V in an increasing order by dðu;PTsuÞð ~GÞ do

7: if u 2 D then continue;
8: if dðu;PTsuÞð ~GÞ < k thenQ:pushððu;PTs

uÞÞ;
9: while Q 6¼ ; do
10: ðv;PTs

vÞ  Q:popðÞ; D D [ fðv;PTs
vÞg;

11: for ðw;PTs
wÞ 2 Nðv;PTsvÞð ~GÞ, s.t. dðw;PTswÞð ~GÞ � k do

12: dðw;PTswÞð ~GÞ  dðw;PTswÞð ~GÞ � 1;
13: if dðw;PTswÞð ~GÞ < k thenQ:pushðwÞ;
14: C  ~G ~V nD; // C can be grouped into different maximal

s-periodic k-core by PTs
u in each node ðu;PTs

uÞ
15: return C;

5.2 Enumerating maximal s-periodic k-clique

Recall that the MPClique enumeration problem is NP-hard.
Thus, there does not exist a polynomial-time algorithm to
solve our problem unless P=NP. Moreover, most existing
maximal clique enumeration algorithms (e.g., the classic
cBron-Kerbosh algorithm [18]) can only work on static
graphs, it is not clear how to apply them to identify periodic
cliques in temporal graphs. To circumvent this problem, we
propose a new Bron-Kerbosch style enumeration algorithm,
called MPClique, which can efficiently compute the com-
plete set of allMPCliques.

TheMPCliqueAlgorithm.Based on Corollary 3, we are able
to obtain the complete set of MPCliques by enumerating all
maximal cliques in ~G. Since ~G is a static graph, we make use
of a Bron-Kerbosch style algorithm to identify all maximal
cliques in ~G. The detailed description of our algorithm is
shown in Algorithm 6. It first invokes Algorithm 5 to find the

QIN ETAL.: PERIODIC COMMUNITIES MINING IN TEMPORAL NETWORKS: CONCEPTS ANDALGORITHMS 3937

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



set of MPCliques, because any node and edge in a MPClique
must be contained in the MPCore based on Lemma 6. Then,
the algorithm performs a Bron-Kerbosch algorithmwith piv-
oting technique to identify all maximal cliques in ~G (line 3).
Specifically, the set ~R denotes the current clique, ~P denotes
the set of candidate nodes, and ~X denotes the set of nodes
that have already been processed. Note that each node in ~P ,
~R, and ~X is a two-tuple ðv;PTs

vÞ. In line 10, the algorithm
adopts a similar pivoting technique developed in [19] to
speed up the enumeration procedure. Note that the operator
Nðv;PTsvÞð ~GÞ is to take the neighbors of the node ðv;PTs

vÞ in the
transformed graph ~G. The correctness of Algorithm 6 can be
guaranteed by [19] and Corollary 3.

Algorithm 6.MPClique ðG; s; kÞ
Input: Temporal graph G ¼ ðV; EÞ, parameters s and k
Output: Set of maximal s-periodic k-clique C
1: ~G ¼ ð ~V ; ~EÞ  MPCore ðG; s; kÞ;
2: global C  ;;
3: EnumClique ð ~V ; ;; ;; kÞ;
4: return C;
5: Procedure EnumClique ð ~P; ~R; ~X; kÞ
6: if j ~P j þ j ~Rj < k then return;
7: if ~P [ ~X ¼ ; then C  C [ f ~Rg;
8: ðv0;PTs

v0 Þ  argmaxðv;PTsvÞ2 ~P[ ~Xj ~P \Nðv;PTsvÞð ~GÞj;
9: for ðv;PTs

vÞ 2 ~P nNðv0;PTs
v0 Þ
ð ~GÞ do

10: ~R0  ~R0 [ ðv;PTs
vÞ;

11: ~P 0  ~P \Nðv;PTsvÞð ~GÞ; ~X0  ~X \Nðv;PTsvÞð ~GÞ;
12: EnumClique ð ~P 0; ~R0; ~X0; kÞ;
13: ~P  ~P n ðv;PTs

vÞ; ~X  ~X [ ðv;PTs
vÞ;

Number of MPCliques.Below, we analyze the number of
MPCliques in the temporal graph G based on a novel con-
cept of s-periodic degeneracy. The classic degeneracy is a
well-known metric for measuring the sparsity of a static
graph [12]. Many real-life networks are often very sparse,
thus having a small degeneracy [12]. Below, we give the def-
inition of degeneracy.

Definition 13 (Degeneracy). The degeneracy of a static graph
G is the minimum integer d such that each subgraph S of G
contains a node v with degree no larger than d.

Eppstein et al. [12] proved that the number of maximal
cliques in a static graph is bounded by ðjV j � dÞ3d=3. They
also developed an efficient maximal clique enumeration
algorithm with time complexity OðdjV j3d=3Þ based on the
degeneracy ordering. The classic degeneracy, however, can-
not be directly used to bound the number of MPCliques in
temporal graphs. Below, we introduce a novel concept,
called s-periodic degeneracy, which will be applied to
bound the number ofMPCliques.

Definition 14 (s-periodic degeneracy). Given a temporal
graph G and parameter s, the s-periodic degeneracy of G is the
smallest integer d̂ such that every s-periodic subgraph contains
a node with degree at most d̂.

Since the degeneracy-based bound for the number of
maximal cliques is tailored for static graph [12], it is not
clear how to use the s-periodic degeneracy to bound the
number of MPCliques in temporal graph. To circumvent

this problem, we resort to bound the number of maximal cli-
ques in the transformed graph ~G. The rationale is that the
number of maximal cliques in ~G is no less than the number
of MPCliques in the temporal graph G by Lemma 3. Since
the transformed graph ~G is a static graph, we are capable of
applying the results developed by Eppstein et al. [12] to
bound the number of maximal cliques in ~G. Let ~d be the
degeneracy of the transformed graph ~G. Then, the following
lemma shows that ~d is bounded by d̂.

Lemma 8. For any temporal graph G and the transformed graph
~G of the PECluster of G, we have ~d 	 d̂.

Proof. First, we consider a connected subgraph ~S of the trans-
formed graph ~G. By our graph transformation method, the
connected subgraph ~S must be a s-periodic subgraph in G.
Therefore, each connected subgraph ~S of ~G can be mapped
to a s-periodic subgraph S0 in G. By definition, there exists a
node u in ~S having degree at most ~d. Hence, the degree of u
in the s-periodic subgraph S0 is also no larger than ~d. By
Definition 14, any s-periodic subgraph in G must have a
node with degree at most d̂. Therefore, we have ~d 	 d̂.
Second, for any disconnected subgraph fDS in ~G, we con-
sider two cases: (1) each connected component of fDS has
the same s-periodic time support set, and (2) the connected
components of fDS are associated with different s-periodic
time support sets. For the case (1), we can easily check thatfDS can be mapped to a s-periodic subgraph fDS0 in G.
Therefore, the above argument can also be used to prove
~d 	 d̂. For the case (2), since fDS cannot be mapped to a
s-periodic subgraph, we do not need to bound d̂. Putting it
all together, we can derive that~d 	 d̂. tu

Based on Lemma 8, we can leverage d̂ to bound the num-
ber ofMPCliques in G as shown in the following theorem.

Theorem 5. Given a temporal graph G, parameters s and k, the
number of maximal s-periodic k-cliques (MPCliques) in G is
less than ð4m2k�2s�1 � d̂Þ3d̂=3.

Proof. Note that if a node u 2 G is a ðs; kÞ-periodic node, the
largest cardinality of the time support set of u in which u
has degree at least k is less than duðGÞ=k. By Lemma 2, the
number of (s; k)-periodic time support sets of u is

bounded by
P ðduðGÞ=kÞ�1

s�1

� �
p¼1 ðduðGÞ=k� spÞ < ðduðGÞ=kÞ2s�1.

Therefore, the total number of (s; k)-periodic time sup-
port sets for all nodes in G, denoted by ~N , is bounded byP

u2V ðduðGÞ=kÞ
2
s�1 < 4m2k�2s�1. Recall that by our

graph transformation approach, the number of nodes in

the transformed graph ~G can be bounded by ~N . Accord-

ing to the results developed by Eppstein et al. [12], the
number of maximal cliques in a static graph with degen-

eracy d is at most ðjV j � dÞ3d=3, where jV j is the number of

nodes of the graph. As a consequence, the number of
maximal cliques in the transformed graph ~G is no larger

than ð4m2k�2s�1 � ~dÞ3~d=3. Since the number of maximal

cliques in ~G is no less than the number of MPCliques in G
and ~d 	 d̂, the number of MPCliques in G can be bounded

by ð4m2k�2s�1 � d̂Þ3d̂=3. tu

Based on the results developed by Eppstein et al. [12], we
can also bound the worst-case time complexity of the

3938 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



MPClique enumeration problem by the s-periodic degener-
acy of G, i.e., d̂. Specifically, we have the following results.

Theorem 6. Given a temporal graph G, parameters s and k, there
exists an algorithm to enumerate all MPCliques in G in
Oðd̂m2k�2s�13d̂=3Þ time, where d̂ is the s-periodic degeneracy
andm is the number of temporal edges in G.

Proof. Since the transformed graph ~G is a static graph, the
algorithm proposed by Eppstein et al. [12] with worst-
case time complexity OðdjV j3d=3Þ can also be applied to
enumerate all maximal cliques in ~G. Note that the degen-
eracy and the number of nodes of ~G is bounded by d̂ and
m2k�2s�1 respectively. The time complexity of the algo-
rithm devised by Eppstein et al. is Oðd̂m2k�2s�13d̂=3Þ to
enumerate all maximal cliques in ~G, thus the theorem is
established. tu

Not that Theorem 6 indicates that enumerating all
MPCliques in a temporal graph G is fixed-parameter tractable
with respect to the parameter s-periodic degeneracy d̂ of G.
Since the s-periodic degeneracy of G is typically very small
in real-life temporal graphs, the proposed algorithm can be
very efficient in practice.

5.3 Finding maximum s-periodic clique

We can also use the transformed graph with a branch-and-
bound algorithm framework to find the maximum periodic
clique [16], [20]. In the worst case, finding the maximum peri-
odic clique need to enumerate all the maximal cliques. How-
ever, we canmodify the search space of Algorithm 6 to search
the maximum periodic clique. Specifically, we do not need
the flag set ~X to check whether the clique is maximal and we
need to design several pruning rules for the candidate maxi-
mum periodic clique. Intuitively, we maintain MaxSize to
record the size of the MAXPClique, Size to record the size of
the candidate clique in current loop and C to record the candi-
date nodes which will be checked to add into the candidate
clique. Below, we will introduce several pruning rules which
canmake termination for the enumeration.

Pruning Rule 1: The Current Max Size Lower Bound. Sup-
pose that we have maintained the current MaxSize of the
MAXPClique, this pruning rule is based on that the newly
joined node must have degree larger than MaxSize to form
a clique of size MaxSizeþ 1. This pruning rule will perform
when the search space is rebuilt.

Pruning Rule 2: The Color-Based Upper Bound. This pruning
rule performs when we have the current Size for the
MAXPClique, and there comes a set of nodes C which will
be added to form a larger MAXPClique. Intuitively, if the
current Size plus the size of C is not larger than the main-
tained MaxSize, in this loop MaxSize will certainly not
changed. However, the upper bound based on the candi-
date set size jCj is not very tight, because Sizeþ jCj is often
larger than MaxSize. A tighter bound can be easily derived
by a coloring algorithm. In particular, we assign a color to
each node in C using a degree-ordering based greedy color-
ing algorithm [21] so that no two adjacent nodes have the
same color. The colors of the nodes in MAXPClique must be
different. Therefore, let colorðCÞ be the number of colors of
the candidate nodes in C, colorðCÞ þ Size is an upper bound
of the size of a maximum clique in the current loop. For an

efficient implement, we only invoke the greedy coloring
algorithm once, and compute the upper bound colorðCÞ þ
Size in each search subspace C based on the same coloring
result. Note that the greedy coloring algorithm can be
implemented in linear time w.r.t. the uncertain graph
size [21] and compute the upper bound in each search sub-
space can be done in OðjCjÞ time, thus such a basic color-
based pruning technique is very efficient.

Pruning Rule 3: Early Termination Based on Degeneracy. We
can have that the size of MAXPClique MaxSize will be no
larger than the degeneracy ~d of the transformed ~G. Because
we can find amaximum clique in which every node’s degree
is MaxSize, and according to Definition 13 MaxSize < ~d.
Computing ~d only needsOðj ~V jj ~EjÞ time, so this pruning tech-
nique is efficient.

Algorithm 7 details the pseudo-code for computing the
size of the MAXPClique. In line 1, it first initializes MaxSize
as 3, since we do not consider the MAXPClique with size
less than 3. Then, it invokes Algorithm 5 to compute the
MPCore, because MAXPClique must be in MPClique and
MPClique are in MPCore according to Lemma 6. Next, it
computes the degeneracy ~d in transformed graph ~G and it
can be used in line 17 to make an early termination based
on pruning rule 3. Furthermore, the algorithm visits node
ui 2 ~V to search the maximum clique (lines 4-10). C records
the candidate nodes which will be checked to add into the
candidate clique and pruning rule 1 performs in line 9. Pro-
cedure FindClique can search the maximum clique by the
given candidate nodes C and parameter MaxSize. In lines
13-15, if C ¼ ;, the current Size is the maximum size of cli-
que in this loop, and it updates MaxSize if Size >
MaxSize. While C is not empty set, it first uses pruning rule
3 and 2 to check whether terminate the loop or not (lines 17-
18), and then checks each node in C to form a larger
clique (lines 19-22). The whole algorithm finished after all
the nodes are checked in line 4. Finally, it returns the size of
the MAXPClique. Note that, if we add a stored node set, it
can also output one clique of the maximum size.

The problem of mining maximum clique is also NP-
hard [21], due to the proposed pruning rules, the time com-
plexity of Algorithm 7 can be bounded by that of Algo-
rithm 6 in Theorem 6. However, the pruning rules can
reduce the computation time greatly. We will show the run-
ning time in practice at Section 6.

6 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the efficiency and effectiveness of the proposed algorithms.
In our experiments, we implement various algorithms for
comparison.

� MPCO-KC is a baseline algorithm integrated with k-
core reduction techniques. It first computes PTu and
EPTuv for nodes and edges in KCore of G using
Algorithm 2, and then constructs a transformed
graph ~G. It uses the core decomposition algorithm to
searchMPCore on ~G.

� MPCO-NC denotes the MPCO-KC algorithm inte-
grated with the PNCluster reduction rule.

QIN ETAL.: PERIODIC COMMUNITIES MINING IN TEMPORAL NETWORKS: CONCEPTS ANDALGORITHMS 3939

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



� MPCO-EC denotes the MPCO-KC algorithm with
the PECluster reduction rule, i.e., Algorithm 5.

� MPCL-KC is a baseline algorithm with k-core reduc-
tion techniques. It constructs ~G by PTu and EPTuv in
KCore of G. Then it uses the Bron-Kerbosch algo-
rithm with a pivoting technique to enumerate all
MPClique on ~G.

� MPCL-NC denotes the MPCL-KC algorithm inte-
grated with the PNCluster reduction rule.

� MPCL-EC denotes the MPCL-KC algorithm with the
PECluster reduction rule, i.e., Algorithm 6.

� MAXPCL denotes the MAXPClique algorithm with
all the pruning rules, i.e., Algorithm 7.

� MAXPCL-B denotes the MAXPClique algorithm
without the three pruning rules in Section 5.3.

To evaluate the effectiveness of the proposed maximal
s-periodic k-clique model, we also use PNCluster and
PECluster as two intuitive baseline models. The reasons are
as follows. First, to the best of our knowledge, there is no
existing community model that can be used to model peri-
odic communities in temporal networks. Second, by Defini-
tions 9 and 12, both PNCluster and PECluster can capture
periodic and cohesive properties of a community in tempo-
ral graphs, thus PNCluster and PECluster can serve as two
baselines for modeling periodic communities.

Algorithm 7.MAXPClique ðG; sÞ

Input: Temporal graph G ¼ ðV; EÞ and parameter s
Output: Size of the maximum s-periodic clique
1: globalMaxSize 3;
2: ~G ¼ ð ~V ; ~EÞ  MPCore ðG; s;MaxSizeÞ;
3: ~d degeneracy of the transformed graph ~G; // each node

is a two-tuple like ðu;PTs
uÞÞ, for convenient, we use u to

represent one node here
4: for i 1 : j ~V j in a descending order w.r.t. the degree of the node

ui 2 ~V do
5: if jNui ð ~GÞj > MaxSize then
6: C  ;;
7: for node uj 2 Nuið ~GÞ do
8: if j > i and jNujð ~GÞj > MaxSize then
9: C  C [ ðv;PTs

vÞ; [Pruning rule 1]
10: FindClique ðC;MaxSizeÞ;
11: returnMaxSize;
12: Procedure FindClique ðC; SizeÞ
13: if C ¼ ; then
14: if Size > MaxSize thenMaxSize Size;
15: return;
16: while jCj > 0 do
17: ifMaxSize ¼ ~d then return; [Pruning rule 3]
18: if colorðCÞ þ Size 	MaxSize then return; [Pruning rule 2]
19: for node u 2 C do
20: C0  ðC n uÞ \Nuð ~GÞ;
21: C0  fvjv 2 C0; jNvð ~GÞ \ C0j �MaxSizeg; [Pruning rule 1]
22: FindClique ðC0; Sizeþ 1Þ;

All algorithms are implemented in Python and the source
code is available at https://github.com/VeryLargeGraph/
MPC/. All the experiments are conducted on a server of
Linux kernel 4.4 with Intel Core(TM) i5-8400 @ 3.20 GHz and
32 GBmainmemory.

Datasets. We use five different types of real-life temporal
networks in the experiments. The detailed statistics of our
datasets are summarized in Table 2. In Table 2, the first two
datasets are human contact temporal networks which are
download from (http://www.sociopatterns.org/datasets/
). Specifically, HS is a temporal network of face-to-face con-
tacts between students in a French high school [2], and PS
is a temporal network of contacts between the children and
teachers in a French primary school [2]. Each snapshot of
these temporal networks is extracted in a hour. Both LKML
and Enron are temporal communication networks down-
loaded from (http://konect.uni-koblenz.de), where each
temporal edge ðu; v; tÞ represents an email communication
from a user u to v at time t. Each snapshot of these temporal
networks is extracted in a month. DBLP is a temporal collab-
oration network of authors in DBLP downloaded from
(http://dblp.uni-trier.de/xml/), where each temporal edge
ðu; v; tÞ denotes that two authors u and v co-authored one
paper at time t. Each snapshot of DBLP is extracted in a
year. In Table 2, dmax is the maximum number of temporal
edges associated with a node, and jT j denotes the number
of snapshots.

Parameter Settings.There are twoparameters k; s in our algo-
rithm. For the parameter k, we vary it from 3 to 7with a default
value of 3. We also vary s from 3 to 7 with a default value of 3.
Unless otherwise specified, the value of the other parameter
are set to its default valuewhen varying a parameter.

6.1 Efficiency Testing

Exp-1: Comparison Between PNCluster and PNClusterþ . Fig. 7
evaluates the running time of PNCluster (Algorithm 1) and
PNClusterþ (Algorithm 3) for computing ðs; kÞ-periodic node
cluster under the default parameter setting. As can be seen,
PNClusterþ is much faster than PNCluster on all datasets.
The running time of PNClusterþ is around a half of the run-
ning time of PNCluster. For example, on Enron, PNClusterþ
takes 1.1 seconds and PNCluster consumes 2.3 seconds to
identify ðs; kÞ-periodic node cluster. The reason is that
PNClusterþ is based on an on-demand computing paradigm
which can substantially reduce redundant computations.
These results are consistent with our theoretical analysis pre-
sented in Section 3.1. In the following experiments, we will
usePNClusterþ to compute ðs; kÞ-periodic node cluster.

Exp-2: Efficiency of Various MPCore and MPClique Mining
Algorithms. Fig. 8 shows the running time of MPCO-KC,
MPCO-NC,MPCO-EC andMPCL-KC,MPCL-NC,MPCL-EC
on different datasets with parameters s ¼ 4, k ¼ 4. Similar
results can also be observed under the other parameter set-
tings. From Fig. 8a, we can see that MPCO-KC is faster than

TABLE 2
Datasets

Dataset jV j jEj jEj dmax jT j Time scale

HS 327 5,818 20,448 322 101 hour
PS 242 8,317 26,351 393 34 hour
LKML 26,885 159,996 328,092 14,172 96 month
Enron 86,978 297,456 499,983 4,311 48 month
DBLP 1,729,816 8,546,306 12,007,380 5,980 59 year

3940 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/VeryLargeGraph/MPC/
https://github.com/VeryLargeGraph/MPC/
http://www.sociopatterns.org/datasets/
http://konect.uni-koblenz.de
http://dblp.uni-trier.de/xml/


the other competitors on all datasets. This is because that in
MPCO-NC and MPCO-EC, the process of invoking
ComputePeriod in Algorithm 2 spends lots of extra time.
However, from Fig. 8b, we can see that MPCL-EC is much
faster than the others on all datasets. For example, on DBLP,
MPCL-EC takes around 7 minutes to enumerate all
MPCliques which cuts the running time over MPCL-NC and
MPCL-KC by 154 and 1,688 percent respectively. These
results indicate that the PECluster pruning rule is indeed
very powerful in practice which are consistent with our anal-
ysis in Section 3.2.

Exp-3: Efficiency With Varying Parameters. Table 3 reports
the running time of MPCO-KC, MPCO-NC, MPCO-EC and
MPCL-KC, MPCL-NC, MPCL-EC with varying parameters
on DBLP. Similar results can also be observed on the other
datasets. At the above part of the table, it can be observed
that MPCO-KC is quicker than MPCO-NC and MPCO-EC
under most parameter settings, but the performance gap is
decreasing with increasing k and s. It is the reason that

MPCO-NC andMPCO-EC need to invoking ComputePeriod
and the processing time is decreasing when k and s increase.
At the below part of the table, we can seeMPCL-EC is faster
than all the other algorithms under almost all parameter set-
tings. In general, the running time of MPCL-KC, MPCL-NC
andMPCL-EC decrease with increasing k and s, because the
size of the transformed graph decreases as k or s increases.
Note that when s ¼ 7 and k � 5, MPCL-NC is slightly faster
thanMPCL-EC. The reason could be that for a large s and k,
the original temporal graph can be reduced to a very small
graph by PNCluster, thus the benefit of PECluster may be
not significant.

Exp-4: Efficiency ofMAXPCL V.S.MAXPCL-B.Fig. 9 shows
the running time of MAXPCL, MAXPCL-B. We also put the
running time of MPCL-EC here for comparison. It can be
observed thatMAXPCL is much faster than MPCL-EC on all
datasets, which means that the branch-and-bound style
framework is efficient in practice. We can also see that on
LKML, Enron and DBLP, MAXPCL-B needs about triple
time as much as MAXPCL. Those results indicate that the
proposed pruning rules in Section 5.3 are effective.

Exp-5: Scalability Testing. Fig. 10 shows the scalability of
MPCL-EC on DBLP. Similar results can also be observed on
the other datasets or other algorithms. We generate four
temporal subgraphs by randomly picking 20-80 percent of
the nodes (temporal edges), and evaluate the running time
of MPCL-EC on those subgraphs. As can be seen, the

Fig. 7. Running time of PNCluster V.S. PNClusterþ .

Fig. 8. Running time of different algorithms on various datasets.

TABLE 3
Running Time (s) of Different Algorithms With Varying Parameters (on DBLP)

Fig. 9. Running time of MAXPCL V.S. MAXPCL-B.

Fig. 10. Scalability testing of MPCL-EC (DBLP).

QIN ETAL.: PERIODIC COMMUNITIES MINING IN TEMPORAL NETWORKS: CONCEPTS ANDALGORITHMS 3941

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



running time increases smoothly with increasing jVj and jEj.
These results suggest that the MPCL-EC algorithm is scal-
able when handling large temporal networks.

Exp-6: Memory Overhead. The most uncontrollable mem-
ory usage in the above algorithms is the storage of PTu and
EPTuv for MPCL-EC in Algorithm 4. Table 4 shows the
memory usage of MPCL-EC on different datasets. We can
see that the memory usage of MPCL-EC is higher than the
size of the temporal graph, becauseMPCL-EC needs to store
PTu and EPTuv (for each node and edge). However, on large
datasets, it is typically lower than five times of the size of
the temporal graph. For instance, MPCL-EC consumes 3,234
MB memory on DBLP while the temporal graph uses 678.5
MB memory. These results indicate that MPCL-EC achieves
near linear space complexity which confirms our theoretical
analysis in Sections 3.2 and 5.2.

6.2 Effectiveness Testing

Exp-7: Number of Nodes in the Reduced Graph. Table 5 shows the
number of remaining nodes in de-temporal graphG obtained
by KCore, PNCluster and PECluster on all datasets under the
default parameter setting. In columns 2-4 of Table 5, the left
integer is the number of remaining nodes and the right value
is the percentage of the remaining nodes over all nodes in the
graph. As can be seen, both PNCluster and PECluster can
prune a large number of unpromising nodes on large datasets.
For example, on DBLP, the number of remaining nodes
obtained by PNCluster and PECluster is only 7.3 and 4.2 per-
cent of the original graph respectively. These results confirm
that our graph reduction techniques are indeed very effective
on large real-life temporal networks.

Exp-8: Size of the Transformed Graph.Table 6 reports the size
of the transformed graph ~G ¼ ð ~V ; ~EÞ generated byPECluster
under the default parameter setting. We can observe that the
size of ~G scales linearly w.r.t. the original graph size. More-
over, the degeneracy ~d of ~G is very small in all datasets. The
number of MPCliques is clearly less than ð4m2k�2s�1 �
~dÞ3~d=3, and the size of MAXPClique is less than ~d, which con-
firms our theoretical analyses in Sections 5.2 and 5.3.

Exp-9: Size of MPCore and Number of MPCliques With
Varying s; k. Fig. 11 shows the size of MPCore with varying
s, k on DBLP. Fig. 12 shows the number of MPCliques with
varying s, k on DBLP. The results on the other datasets are
consistent. As shown in Figs. 11a and 12a, the size of
MPCore and number of MPCliques drop sharply with an
increasing k. Likewise, we can observe from Figs. 11b
and 12b that the size of MPCore and number of MPCliques
decreases with a growing s. The reason is that with a large
k or s, the periodic constraint will be strong, thus the size of
MPCore and number of MPCliques decreases. These results
confirm the definitions ofMPCore,MPCliques and our theo-
retical analysis in Theorem 6.

Exp-10: Distribution of the Size of MPCliques With Varying
Parameters.Fig. 13 shows the distribution of the size of
MPCliques on Enron and DBLP with parameters s ¼ 3 (or
s ¼ 6) and k ¼ 3. Similar trends can also be observed on the
other datasets and using other parameter settings. We can
see that most MPCliques has a small size on Enron and
DBLP, and very few MPCliques have a size no less than 10.

TABLE 4
Memory Overhead of MPCL-EC

Memory Graph PTþ EPT Memory (all)

HS 5.2MB 25.2MB 45MB
PS 2.8MB 15.8MB 35MB
LKML 20.1MB 35.4MB 101MB
Enron 53.3MB 98.6Mb 198MB
DBLP 678.5MB 2,398MB 3,234MB

TABLE 5
Number of Nodes in the Reduced Graph

KCore PNCluster PECluster

HS 326 99% 280 86% 165 51%
PS 242 100% 233 96% 211 87%
LKML 9,773 36% 1,785 6.6% 926 3.4%
Enron 18,591 21% 3,314 3.8% 2,315 2.7%
DBLP 1,258,540 73% 126,357 7.3% 73,109 4.2%

TABLE 6
The Size of the Transformed Graph Reduced by PECluster

j ~V j j ~Ej #MPCliques ~d jMAXPCliquej
HS 1,946 3,388 18 24 10
PS 3,508 12,174 475 47 11
LKML 149,385 505,514 17,382 12 6
Enron 37,869 173,914 10,203 53 13
DBLP 353,557 1,028,598 45,442 120 21

Fig. 11. Size of MPCore with varying parameters.

Fig. 12. Number of MPCliques with varying parameters.

Fig. 13. Distribution of the size of MPCliques (k ¼ 3).

3942 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



This is because a MPClique must satisfy the periodic clique
constraint which may rule out large cliques.

Exp-11: Case Study on DBLP. We conduct a case study
using DBLP to further evaluate the effectiveness of various
models. As MPClique is the most cohesive model, we use
MPClique to compare with other baselines here. Fig. 14
shows three communities of Prof. Michael Stonebraker
obtained by PNCluster, PECluster and MPClique respec-
tively, using default parameters. As can be seen in Fig. 14c,
the community obtained by MPClique contains two cliques,
and each clique comprises the close and long-term collabora-
tors of Prof. Michael Stonebraker. Moreover, we find that
each clique appears in 2015, 2016, and 2017 year, suggesting
that there are two periodic communities containing Prof.
Michael Stonebraker in recent years. From Figs. 14a and 14b,
we can see that the communities obtained by PNCluster and
PECluster not only contain two MPCliques in Fig. 14c, but
they also include some short-term collaborators of Prof.
Michael Stonebraker who did not collaborate with him peri-
odically, which indicates that both PNCluster and PECluster
models cannot fully capture the periodic patterns of a com-
munity. These results further confirm thatMPClique is more
effective than the baselines to detect periodic communities in
temporal graphs.

7 RELATED WORK

Temporal Graph Analysis. Our work is related to the studies
on temporal graph analysis. Yang et al. [22] proposed an
algorithm to detect frequent changing components in the
temporal graph. Huang et al. [23] investigated the minimum
spanning tree problem in temporal graphs. Gurukar et al.
[24] presented a model to identify the recurring subgraphs
that have similar sequence of information flow in temporal
graphs. Wu et al. [25] proposed an efficient algorithm to
answer the reachability and time-based path queries in tem-
poral graphs. Yang et al. [3] studied a problem of finding a
set of diversified quasi-cliques from a temporal graph. Wu
et al. [7] proposed a temporal k-core model based on the
counts of temporal edges. Ma et al. [4] investigated a dense
subgraph problem in temporal graphs. Li et al. [5] devel-
oped an efficient algorithm to identify persistent communi-
ties in temporal graphs. To the best of our knowledge, our
work is the first to study the problem of mining periodic
communities in temporal graphs.

Community Detection in Dynamic Graphs. There is a num-
ber of studies for mining communities on dynamic net-
works [26]. Most of them aim to identify and analyze the
community structures that evolve over time. Lin et al. [27]
proposed a probabilistic generative model to analyze
evolving communities. Chen et al. [28] developed an

algorithm for tracking community dynamics. Agarwal
et al. [29] studied how to find dense clusters for dynamic
microblog streams. Li et al. [30] devised an algorithm to
maintain the k-core in large dynamic graphs. Rossetti et al.
[31] proposed an online iterative algorithm for tracking the
evolution of communities. Unlike these studies, our work
focuses mainly on detecting periodic communities in tem-
poral graphs.

Maximal Cliques Enumeration. Our work is also related to
the maximal clique enumeration problem. Notable algo-
rithms for enumerating maximal clique include the classic
Bron-Kerbosch algorithm [18] and its variants [12], [19],
[32]. Tomita et al. [19] proved that the Bron-Kerbosch algo-
rithm with a pivoting technique is essentially optimal
according to the worst-case bound. Eppstein et al. [12]
developed an algorithm which is fixed-parameter tractable
w.r.t. the degeneracy of the graph. Cheng et al. [32] pro-
posed an external-memory algorithm for clique enumera-
tion in massive graphs. More recently, Himmel [33]
developed a Bron-Kerbosch style algorithm for enumerating
maximal cliques in temporal graph. Their work, however,
cannot be used to enumerate periodic cliques.

Periodic Behavior Mining. The studies of periodic behavior
mining are also related to our work. Notable examples are
summarized below. Li et al. [34] addressed the problem of
mining periodic behaviors for moving objects. Kurashima
et al. [35] modeled the periodic actions in real-world (e.g.,
eating, sleep, and exercise) to make predictions for future
actions. Radinsky et al. [36] also developed a temporal
model to predict the periodic actions. Lahiri et al. [37] inves-
tigated a problem of mining periodic subgraphs in dynamic
social networks. Their work, however, does not consider
the communities in the periodic subgraphs, thus cannot be
used for mining periodic communities.

8 CONCLUSION

In this work, we study a problem of mining periodic com-
munities in temporal graph. We propose novel models,
including s-periodic k-core and s-periodic k-clique, that
represents a periodic community in temporal networks. We
first develop several new pruning techniques to substan-
tially reduce the size of the temporal graph. Then, we trans-
form the reduced temporal graph into a static graph. Next,
we propose a decomposition algorithm to search maximal
s-periodic k-core, a Bron-Kerbosch style algorithm to enu-
merate all maximal s-periodic k-cliques, and a branch-and-
bound style algorithm to find maximum s-periodic clique.
Comprehensive experiments on five real-life temporal net-
works demonstrate the efficiency, scalability and effective-
ness of our algorithms.

ACKNOWLEDGMENTS

This work was partially supported by (i) NSFC Grants
62072034, 61932004, 61772346, U1809206, 61732003; (ii)
National Key R&D Program of China 2018YFB1004402; (iii)
Fundamental Research Funds for the Central Universities
(Grant No. N181605012); (iv) Beijing Institute of Technology
Research Fund Program for Young Scholars; (v) ARC
FT200100787.

Fig. 14. Case study on DBLP.

QIN ETAL.: PERIODIC COMMUNITIES MINING IN TEMPORAL NETWORKS: CONCEPTS ANDALGORITHMS 3943

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] P. Vanhems et al., “Estimating potential infection transmission
routes in hospital wards using wearable proximity sensors,” PLoS
One, vol. 8, 2013, Art. no. e73970.

[2] J. Fournet and A. Barrat, “Contact patterns among high school
students,” PLoS One, vol. 9, 2014, Art. no. e107878.

[3] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. S. Lui,
“Diversified temporal subgraph pattern mining,” in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 1965–1974.

[4] S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai, “Fast computation of
dense temporal subgraphs,” in Proc. IEEE 33rd Int. Conf. Data
Eng., 2017, pp. 361–372.

[5] R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community
search in temporal networks,” in Proc. IEEE 34th Int. Conf. Data
Eng., 2018, pp. 797–808.

[6] I. R. Fischhoff, S. R. Sundaresan, J. Cordingley, H. M. Larkin, and
M.-J. Sellier, “Social relationships and reproductive state influence
leadership roles in movements of plains zebra, equus burchellii,”
Animal Behav., vol. 73, no. 5, pp. 825–831, 2007.

[7] H. Wu et al., “Core decomposition in large temporal graphs,” in
Proc. IEEE Int. Conf. Big Data, 2015, pp. 649–658.

[8] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores
decomposition of networks,” Adv. Data Anal. Classification, vol. 5,
no. 2, pp. 129–145, 2011.

[9] S. B. Seidman, “Network structure and minimum degree,” Soc.
Netw., vol. 5, no. 3, pp. 269–287, 1983.

[10] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, andW. Liang, “Efficiently
computing k-edge connected components via graph decom-
position,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013,
pp. 205–216.

[11] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying
k-truss community in large and dynamic graphs,” Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2014, pp. 1311–1322.

[12] D. Eppstein, M. L€offler, and D. Strash, “Listing all maximal cli-
ques in large sparse real-world graphs,” ACM J. Exp. Algorithmics,
vol. 18, 2013, Art. no. 3.1.

[13] J. Li, T. Cai, K. Deng, X. Wang, T. Sellis, and F. Xia, “Community-
diversified influence maximization in social networks,” Inf. Syst.,
vol. 92, 2020, Art. no. 101522.

[14] T. Cai, J. Li, A. S. Mian, R. Li, T. Sellis, and J. X. Yu, “Target-aware
holistic influence maximization in spatial social networks,” IEEE
Trans. Knowl. Data Eng., to be published, doi: 10.1109/
TKDE.2020.3003047.

[15] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li, “Finding
maximal k-edge-connected subgraphs from a large graph,” in
Proc. 15th Int. Conf. Extending Database Technol., 2012, pp. 480–491.

[16] L. Chang, “Efficient maximum clique computation over large
sparse graphs,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Dis-
cov. Data Mining, 2019, pp. 529–538.

[17] J. Cohen, “Trusses: Cohesive subgraphs for social network analy-
sis,” Nat. Secur. Agency Tech. Report, vol. 16, pp. 3–29, 2008.

[18] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an
undirected graph,” Commun. ACM, vol. 16, no. 9, pp. 575–577,
1973.

[19] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computational
experiments,” Theor. Comput. Sci., vol. 363, no. 1, pp. 28–42, 2006.

[20] Q. Wu and J. Hao, “A review on algorithms for maximum clique
problems,” Eur. J. Oper. Res., vol. 242, no. 3, pp. 693–709, 2015.

[21] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson,
“Ordering heuristics for parallel graph coloring,” in Proc. 26th
ACM Symp. Parallelism Algorithms Architectures, 2014, pp. 166–177.

[22] Y. Yang, J. X. Yu, H. Gao, J. Pei, and J. Li, “Mining most frequently
changing component in evolving graphs,” World Wide Web, vol.
17, no. 3, pp. 351–376, 2014.

[23] S. Huang, A. W. Fu, and R. Liu, “Minimum spanning trees in tem-
poral graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2015, pp. 419–430.

[24] S. Gurukar, S. Ranu, and B. Ravindran, “COMMIT: A scalable
approach to mining communication motifs from dynamic
networks,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015,
pp. 475–489.

[25] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and
time-based path queries in temporal graphs,” in Proc. IEEE 32nd
Int. Conf. Data Eng., 2016, pp. 145–156.

[26] G. Rossetti andR. Cazabet, “Community discovery in dynamic net-
works: A survey,”ACMComput. Surv., vol. 51, no. 2, pp. 35:1–35:37,
2018.

[27] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “FacetNet:
A framework for analyzing communities and their evolutions in
dynamic networks,” in Proc. 17th Int. Conf. World Wide Web, 2008,
pp. 685–694.

[28] Z. Chen, K. A. Wilson, Y. Jin, W. Hendrix, and N. F. Samatova,
“Detecting and tracking community dynamics in evolutionary
networks,” in Proc. IEEE Int. Conf. Data Mining Workshops, 2010,
pp. 318–327.

[29] M. K. Agarwal, K. Ramamritham, and M. Bhide, “Real time dis-
covery of dense clusters in highly dynamic graphs: Identifying
real world events in highly dynamic environments,” Proc. VLDB
Endowment, vol. 5, no. 10, pp. 980–991, 2012.

[30] R. H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10,
pp. 2453–2465, Oct. 2014.

[31] G. Rossetti, L. Pappalardo, D. Pedreschi, and F. Giannotti, “Tiles:
An online algorithm for community discovery in dynamic social
networks,”Mach. Learn., vol. 106, no. 8, pp. 1213–1241, 2017.

[32] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maxi-
mal cliques in massive networks,” ACM Trans. Database Syst.,
vol. 36, no. 4, pp. 21:1–21:34, 2011.

[33] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge,
“Adapting the bron–kerbosch algorithm for enumerating maxi-
mal cliques in temporal graphs,” Soc. Netw. Anal. Mining, vol. 7,
no. 1, pp. 7–35, 2017.

[34] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye, “Mining periodic
behaviors for moving objects,” in Proc. 16th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2010, pp. 1099–1108.

[35] T. Kurashima, T. Althoff, and J. Leskovec, “Modeling interdepen-
dent and periodic real-world action sequences,” in Proc. World
Wide Web Conf., 2018, pp. 803–812.

[36] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and E.
Horvitz, “Modeling and predicting behavioral dynamics on the
web,” in Proc. 21st Int. Conf. World Wide Web, 2012, pp. 599–608.

[37] M. Lahiri and T. Y. Berger-Wolf, “Periodic subgraph mining in
dynamic networks,” Knowl. Inf. Syst., vol. 24, no. 3, pp. 467–497,
2010.

Hongchao Qin received the BS degree in mathe-
matics and ME degree in computer science from
Northeastern University, China, in 2013 and
2015, respectively. He is currently working toward
the PhD degree at Northeastern University,
China. His current research interests include
social network analysis and data-driven graph
mining.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong, Hong Kong, in
2013. He is currently an associate professor at
the Beijing Institute of Technology, Beijing, China.
His research interests include graph data man-
agement and mining, social network analysis,
graph computation systems, and graph-based
machine learning.

Ye Yuan received the BS, MS, and PhD degrees
in computer science from Northeastern Univer-
sity, China, in 2004, 2007, and 2011, respectively.
He is now a professor with the Department of
Computer Science, Northeastern University,
China. His research interests include graph data-
bases, probabilistic databases, and social net-
work analysis.

3944 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 8, AUGUST 2022

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TKDE.2020.3003047
http://dx.doi.org/10.1109/TKDE.2020.3003047


Guoren Wang received the BSc, MSc, and PhD
degrees from the Department of Computer Sci-
ence, Northeastern University, China, in 1988,
1991 and 1996, respectively. Currently, he is a
professor with the Department of Computer Sci-
ence, Beijing Institute of Technology, Beijing,
China. His research interests include XML data
management, query processing and optimization,
bioinformatics, high dimensional indexing, paral-
lel database systems, and cloud data manage-
ment. He has published more than 100 research
papers.

Weihua Yang received the PhD degree from
Laboratoire de Recherche en Informatique-
CNRS, Department of Computer Science, Pairs-
Sud University, Paris, France, in 2013. He is cur-
rently a professor at the Taiyuan University of
Technology, Taiyuan, China. His research inter-
ests are in the area of graph theory, connectivity
and hamiltonicity of graphs, design and analysis
of graph algorithm.

Lu Qin received the bachelor’s degree from the
Department of Computer Science and Technology,
Renmin University of China, China, in 2006, and
the PhD degree from the Department of Systems
Engineering and Engineering Management, Chi-
neseUniversity of HongKong, Hong Kong, in 2010.
He is now an associate professor in the Centre of
Quantum Computation and Intelligent Systems
(QCIS), University of Technology, Sydney (UTS),
Australia. His research interests include parallel big
graph processing, I/O efficient algorithms on mas-
sive graphs, and keyword search in graph data.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

QIN ETAL.: PERIODIC COMMUNITIES MINING IN TEMPORAL NETWORKS: CONCEPTS ANDALGORITHMS 3945

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 03:37:02 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


